85912 (589896), страница 4

Файл №589896 85912 (Плоские кривые) 4 страница85912 (589896) страница 42016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

a >b, т. к. b2 = a2 b2, следовательно А1A2 – большая ось эллипса, В1В2 – малая ось эллипса;

Исследуем поведение эллипса в первой четверти:

, следовательно, .

Так, с возрастанием х от 0 до а у < b, то функция у в первой четверти убывающая. При х = 0, у = b; при х = а у = 0, А1A2 – вершины эллипса.

Гиперболой называется геометрическое место точек, для каждой из которых абсолютная величина разности расстояний до двух фиксированных точек плоскости, называемых фокусами, есть данное положительное число 2а, меньшее, чем расстояние 2с между фокусами. [5]

Каноническим уравнением гиперболы является уравнение . Оно используется для изучения её геометрических свойств (см. рис. 14):

  1. Точка О (0; 0) не принадлежит гиперболе.

  2. Гипербола симметрична относительно осей и начала координат. Так же как и в случае эллипса, точка О является центром симметрии гиперболы, а прямые Ох и Оу – осями симметрии. Центр симметрии называется центром гиперболы.

3. С осью Ох: у=0 , А1(а; 0), А2(-а; 0)

С осью Оу: х=0, , В1(b; 0), B2(-b; 0)

Рис. 14

  1. Т. о. х = – а и х = а – точки гиперболы лежат вне полосы. [14]

Параболой называется геометрическое место точек, для каждой из которых расстояние до некоторой фиксированной точки плоскости, называемой фокусом, равно расстоянию до некоторой фиксированной прямой, не проходящей через фокус, и называемой директриссой. [7, 8]

Расстояние от фокуса параболы до её директрисы называется параметром параболы. Эксцентриситет параболы принимается равным единице.

Уравнение у = 2 рх является каноническим уравнением параболы. Каноническое уравнение параболы также используется для изучения её геометрических свойств (см. рис. 15):

Рис. 15

  1. Точка О (0; 0) принадлежит гиперболе;

  2. Если точка М (х; у) принадлежит параболе, то точка М1(х; – у) также принадлежит параболе, следовательно, парабола симметрична относительно Оу.

  3. Из уравнения параболы у – любое, , т.е. «ветви» параболы расположатся в положительной полуплоскости, относительно Оу.

  4. В I четверти , при , . В первой четверти у возрастает. [13]

5. Цели и задачи факультативных занятий

В настоящее время традиционный взгляд на содержание обучения математике, её роль и место в общем образовании пересматривается и уточняется. Для продуктивной деятельности в современном мире требуется достаточно прочная базовая математическая подготовка.

Факультативные занятия по математике призваны углублять математические знания школьников, уже определивших основной круг своих учебных интересов.

Главной целью факультативных занятий по математике является углубление и расширение знаний, развитие интереса учащихся к предмету, развитие их математических способностей, привитие школьникам интереса и вкуса к самостоятельным занятиям математикой, воспитание инициативы и творчества.

Для того, чтобы факультативные занятия по математике были эффективными, необходимо организовать там, где есть:

  1. высококвалифицированные учителя или другие специалисты, способные вести занятия на высоком научно – методическом уровне;

  2. не менее 15 учащихся, желающих изучать данный факультативный курс. [12]

Факультативы – занятия, основанные на принципе добровольного участия и призванные решать три основные задачи:

  1. повышение уровня математического мышления, углубление теоретических знаний и развитие практических навыков учащихся, выявления математических способностей;

  2. организация досуга учащихся в свободное от учёбы время.

Данный факультатив предназначен для учеников 11 классов.

Для проведения факультатива выделяется 1 час в неделю, всего 16 часов, разработан на первое полугодие. [18]

По существу, факультативные занятия являются наиболее динамичной разновидностью дифференциации обучения.


6. Тематическое планирование факультатива

1

История изучения плоских кривых

1 ч

2

Способы образования кривых

3 ч

Классификация плоских кривых

4 ч

3

Алгебраические кривые

1 ч

4

Род алгебраических кривых

2 ч

5

Трансцендентные кривые

1 ч

Кривые, изучаемые в школьном курсе математики

6 ч

6

Эллипс

1 ч

7

Гипербола

1 ч

8

Парабола

2 ч

9

Итоговое занятие. Выпуск математической газеты

2 ч


Занятие №1

Тема: История изучения плоских кривых

Цели: 1) познакомить с историей изучения плоских кривых;

2) развить интерес у учащихся к знаниям, повысить интерес к учению;

3) углубить знания, полученные на уроках математики.

Ход занятия

I. Организационный момент

II. Основная часть

  1. Лекция об истории изучения плоских кривых [см. гл. I § 1]

  2. Задание

Ребята, разгадаем с вами кроссворд:

ПАСКАЛЬ

ПАПИРУС

АПОЛЛОНИЙ

РОБЕРВАЛЬ

АРХИМЕД

ГЕОМЕТРИЯ

По горизонтали

    1. Учёный, считавший, что дуга спирали Архимеда равна дуге параболы

    2. Египтяне за 17–20 веков до нашей эры занимались квадратурой круга. Как назывался документ?

    3. Кто написал трактат о конических сечениях? (3–2 в. до н.э.)

    4. Какой учёный показал, что задача спрямления спирали идентична задаче спрямления параболы?

    5. Учёный, решивший задачу о квадратуре сегмента параболы.

    6. Как называлась книга Р. Декарта, изданная в 1637 году?

По вертикали

  1. Название линии, прошедшей большой исторический период.

III. Итог занятия

    1. Домашнее задание

Написать реферат на тему «История изучения плоских кривых».

Занятие №2–3

Тема: Эллипс

В декартовой системе координат, как хорошо известно, окружность радиуса R c центром C (a; b) задаётся уравнением (x2a2) + (y2b2) = R2. Если сжать окружность с центром в начале координат к вертикальному диаметру с коэффициентом k > 0, то получится линия с уравнением k2x2 + y2 = R2 (1), которая называется эллипсом. При этом ясно, что если k > 1, то это действительно сжатие в привычном смысле этого слова (рис. 16, а), а если 0 < k < 1, то это растяжение (рис. 16, б). Но договоримся использовать один общий термин – сжатие.

Преобразуем уравнение (1). Разделим его обе части на R2:

всегда.

Сделаем замену и , тогда получим уравнение эллипса в общем виде; (2).

Рис. 16

Уравнение (2) называется каноническим уравнением эллипса. В школьном курсе изучается уравнение окружности с центром в начале координат (3).

Посмотрим, как связаны окружность и эллипс.

В уравнении (3) сделаем замену

Разделим на R2:

. Пусть , тогда .

Итак, мы видим, что окружность – частный случай эллипса, когда а = b.

Отметим ещё, возвращаясь к уравнению (1), что окружность – это эллипс, где k = 1.

Из уравнений видно, что эллипс – линия, симметричная относительно обеих осей координат, а значит, и центрально-симметричная. Геометрически, он полностью характеризуется одним из поперечных размеров (они называются осями эллипса) и их отношением.

Вокруг эллипса естественным образом описывается прямоугольник со сторонами, равными осям эллипса и параллельными координатным прямым, который является результатом сжатия квадрата, описанного вокруг исходной окружности. Называется он осевым прямоугольником эллипса. Если научиться его строить по уравнению эллипса, то довольно легко после этого изобразить и сам эллипс.

  1. Например, дано уравнение а) 3х2 + у2 = 7. Изобразить эллипс двумя способами. [16]

I способ

Запишем его в виде . Устанавливаем, что , строим осевой прямоугольник со сторонами 2R, и изображаем сам эллипс (рис. 17). Отметим, что в правой части уравнения должно быть положительное число, а в левой – сумма квадрата абсциссы, взятого с положительным коэффициентом, и квадрата ординаты.

Характеристики

Тип файла
Документ
Размер
29,76 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6374
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее