85647 (589851), страница 6

Файл №589851 85647 (Использование измерений и решение задач на местности при изучении некоторых тем школьного курса геометрии) 6 страница85647 (589851) страница 62016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Пусть А, В и С — точки расположения трех данных домов. Проведем серединные перпендикуляры к отрезкам АВ и ВС. Тогда точка О их пересечения будет единственной точкой, равноудаленной от точек А, В и С, поскольку для этой точки выполнены равенства АО=ОВ и ВО=ОС, а если точку О выбрать иначе, то для нее хотя бы одно из указанных равенств будет несправедливо. Заметим, что проведенные перпендикуляры могут и не пересечься, но только в случае, когда точки А, В и С лежат на одной прямой. Таким образом, искомое место для колодца — точку О — можно найти приведенным способом, но лишь при ус­ловии, что дома расположены не на одной прямой.

2.3. Две магистрали пересекаются под углом, внутри которого протекает речка. Где построить мост через речку, чтобы расстояния от него до обеих магистралей были одинаковыми?

Проведем биссектрису угла, образованного магистралями. Так как все точки этой биссектрисы равноудалены от магистралей и никакие другие точки внутри угла этим свойствам не обладают, то мост через речку нужно построить в точке пересечения биссектрисы с речкой (если такая точка найдется).

2.4. Две магистрали пересекают канал в разных местах. Где нужно разместить пионерский лагерь, чтобы расстояния от него до канала и до каждой магистрали оказались одинаковыми? Укажите место расположения пионерского лагеря, при котором эти расстояния минимальны?

Каждая магистраль, пересекаясь с каналом, образует две пары вертикальных углов, а четыре их биссектрисы составляют две прямые (рис. 29). Так как все точки этих биссектрис равноудалены от канала и соответствующей магистрали, а никакие другие точки этим свойством не обладают, то все возможные места расположения пионерского лагеря, лежат на пересечениях биссектрис углов при раз­ных вершинах А и В.

Рис. 29

Таких точек пересечения может быть, вообще говоря, четыре, поскольку любая из двух прямых, проходящих через вершину А, может пересечься с любой из двух прямых, проходящих через вершину В. Если магистрали не параллельны, то никакие пары этих прямых не параллельны и все четыре точки пересечения реализуются, а наименьшее расстояние до канала (а значит, и до магистралей) достигается в той точке О пересечения биссектрис, которая лежит внутри треугольника, образованного каналом и магистралями. Действительно, из двух точек пересечения биссектрисы внутреннего угла треугольника при вершине А с биссектрисами углов при вершине В ближе к вершине А (а значит, и к каналу) лежит точка О. Аналогично из двух точек пересечения, лежащих на биссектрисе внутреннего угла треугольника при вершине В, также выбираем точку О. Наконец, последняя точка пересечения биссектрис внешних углов треугольника при вершинах А и В лежит вместе с точкой О на биссектрисе угла треугольника при вершине С, причем точка О лежит ближе к вершине С, следовательно, ближе к магистралям и, стало быть, к каналу. Если же магистрали параллельны, то четыре биссектрисы углов при вершинах А и В образуют параллелограмм (из-за симметрии всей картины относительно середины отрезка АВ), поэтому обе точки пересечения этих прямых равноудалены от канала.

2.5. В каком направлении через город должна проходить магистраль, чтобы два данных населенных пункта лежали по разные стороны от нее на одинаковом расстоянии?

Пусть через город А нужно провести магистраль, равноудаленную от пунктов В и С (рис. 30). Так как точки В и С должны лежать по разные стороны от искомой магистрали, то она должна пересечь отрезок ВС, причем точка пересечения должна совпадать с серединой этого отрезка (что вытекает из равенства соответствующих прямоугольных треугольников). Таким образом, искомая магистраль определена однозначно, если только сама точка А не совпадает с серединой отрезка ВС (в случае их совпадения годится любое направление).

Рис. 30

2.6. Как должна проходить магистраль, чтобы расстояния от нее до трех данных населенных пунктов были одинаковыми? Укажите положение магистрали, при котором эти расстояния минимальны.

Обозначим через А, В и С три данных населенных пункта. Если искомая магистраль может проходить так, чтобы все три точки лежали по одну сторону относительно магистрали (в том числе и на ней самой) и к тому же на равном расстоянии от нее, то точки А, В и С лежат на одной

Рис. 31

прямой, параллельной магистрали. В этом случае расстояние минимально, когда магистраль проходит через эти точки.

В противном случае две из данных точек, скажем А и В, должны лежать по одну сторону от искомой магистрали, а третья — по другую (рис. 31). Так как магистраль равноудалена от точек А и С, то она проходит через середину отрезка АС (см. решение задачи 2.5), а так как она равноудалена от точек В и С, то проходит и через середину отрезка ВС. Таким образом, мы доказали, что искомая магистраль проходит по одной из трех средних линий треугольни­ка ABC.

Среди возможных расположений магистрали наименьшее расстояние до точек А, В и С, равное половине наименьшей высоты треугольника ABC, достигается, когда магистраль параллельна наибольшей стороне этого треугольника (точнее, какой-нибудь из наибольших сторон, если их несколько), поскольку наименьшая высота в треугольнике соответствует наибольшей стороне — ведь их произведение есть константа, равная удвоенной площади треугольника.

2.7. Магистраль пересекает канал под углом, внутри которого расположен населенный пункт. В каком направлении следует провести через этот пункт прямую дорогу, чтобы расстояния по ней до магистрали и до канала оказались одинаковыми?

Проведем прямую через точку А пересечения магистрали с каналом и через данный населенный пункт В. Рассмотрим точку С па этой прямой, удаленную от точки В на расстояние АВ (рис. 32). Тогда если искомая дорога пересекает магистраль и канал в точках D и Е соответственно, то точка В есть центр симметрии четырехугольника ADCE, который, стало быть является параллелограммом. Теперь сами точки D и Е можно найти, проведя через точку С прямые, параллельные каналу и магистрали, до пересечения их соответственно с магистралью (в точке D) и с каналом (в точке Е).

Рис. 32

2.8. Железная дорога пересекает канал под острым углом, внутри которого расположен населенный пункт. В каком месте железной дороги нужно расположить полустанок, чтобы расстояния от него до этого пункта и до канала оказались одинаковыми? Укажите положение полустанка, при котором эти расстояния минимальны.

Из точки А пересечения железной дороги с кана­лом через данный населенный пункт В проведем луч. Опустим из какой-либо точки О железной дороги перпенди­куляр ОС к каналу и найдем на луче АВ точки, удаленные

Рис. 33

от точки О на расстояние ОС. Таких точек окажется две — это буду точки D и Е, лежащие на окружности с центром О и радиусом ОС. Для определенности будем считать, что DA>EA (рис. 33). Проведем отрезки BF и BG, соединяющие точку В с точками F и G на железной дороге и параллельные отрезкам DO и ЕО соответственно. Тогда из подобия соответствующих треугольников будет следовать, что точки F и G равноудалены от канала и от точки В, т. е. они укажут искомые места расположения полустанка. Никаких других возможностей для расположения полустанка нет, поскольку для любой искомой точки существует преобразование гомотетии относительно точки А, переводящее искомую точку в точку О, а точку В в точку луча АВ, удаленную от точки О на расстояние ОС, т. е. в одну из точек D или Е.

Минимальное расстояние до полустанка достигается в точке F, для которой имеем

,

ибо и .

2.9. Две магистрали пересекаются под углом, внутри которого расположен населенный пункт. Как выбрать место для устройства пруда круглой формы, чтобы расстояния от него до этого пункта и до каждой магистрали оказались одинаковыми?

Найдем точку О, в которой должен находиться центр пруда. Поскольку точка О равноудалена от двух данных магистралей, то она лежит на биссектрисе угла между ними. Таким образом, задача сводится к нахождению на данной прямой l – биссектрисе - точки О , равноудаленной от данной точки А – населенного пункта – и от другой данной прямой – той из магистралей, которая образует с прямой l угол, содержащей точку А (этот угол будет обязательно острым, так как он равен половине угла между магистралями). Такая ситуация разобрана в решении задачи 2.8.

Рис. 34

2.10. Как выбрать место для устройства пруда круглой формы, чтобы расстояния от него до данной магистрали и до каждо­го из двух данных населенных пунктов, расположенных с одной стороны от магистрали, были одинаковыми?

Найдем точку О, в которой должен находиться центр пруда. Поскольку точку О равноудалена от двух данных населенных пунктов А и В, то она лежит на серединном перпендикуляре к отрезку АВ (рис. 34). Таким образом, задача сводится к нахождению на данной прямой h (перпендикуляре) точки О, равноудаленной от точки А или точки В и от другой данной прямой l (магистрали). Если прямые h и l не параллельны и не перпендикулярны, то они в пересечении образуют острый угол, внутри которого расположена одна из точек А и В (ведь обе эти точки лежат по одну сторону от прямой l). Способ нахождения точки О в этом случае указан в решении задачи 2.8. Если прямые h и l перпендикулярны, то точка О должна быть равноудалена от точки их пересечения и от точки А, и этот случай также был разобран в решении задачи 2.1. Наконец, если прямые h и l параллельны, то точка 0 должна быть удалена от точки А на расстояние, равное расстоянию d между прямыми h и l. Поэтому искомая точка лежит на пересечении прямой h и окружности с центром А и радиусом d (таких точек пересечения будет две, поскольку расстояние от точки А до прямой h меньше d — ведь одна из точек А или В расположена между прямыми h и l).

§3. Задачи, предлагаемые учащимся сельской школы

ОКРУЖНОСТЬ

3 .1. Для возможности поворота автомобиля (или колесного трактора) направляющие (передние) колеса соединены с осью шарнирами

и так, что плоскости колес (рис. 35) могут по­ворачиваться относительно оси. Во время правильного поворота все четыре колеса катятся по дугам концентрических окружностей, причем проекции колес являются касательными к этим окружностям [19]. Докажите, что правильный поворот возможен лишь тогда, когда направляющие колеса поворачиваются на разные углы.

Решение. Допустим противное, что Тогда равны и вертикальные им углы и , а значит, по признаку параллельности прямые и параллельны.

С

Рис.35

другой стороны, поскольку углы и прямые, а прямые и — касательные к окружности качения, то прямые и содержат радиусы концентрических окружностей. Значит, прямые и пересекаются. Противоречие.

Замечание. Рассмотренный эффект на практике достигается с помощью так называемой рулевой трапеции.

ТЕОРЕМА ПИФАГОРА

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6513
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее