85601 (589846), страница 5

Файл №589846 85601 (Живая геометрия) 5 страница85601 (589846) страница 52016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

Живые существа обычно растут, сохраняя общее начертание своей формы. При этом чаще всего они растут во всех направлениях — взрослое существо и выше и толще детеныша. Но раковины морских животных могут расти лишь в одном направлении. Чтобы не слишком вытягиваться в длину, им приходится скручиваться (рис.19), причем каждый следующий виток подобен предыдущему. А такой рост может совершаться лишь по логарифмической спирали или ее некоторым пространственным аналогам.

Поэтому раковины многих моллюсков, улиток, а также рога таких млекопитающих, как архары (горные козлы), закручены по логарифмической спирали. Можно сказать, что эта спираль является математическим символом соотношения формы и роста. Великий немецкий поэт Иоганн-Вольфганг Гёте считал ее даже математическим символом жизни и духовного развития. По логарифмической спирали очерчены не только раковины — в подсолнухе семечки расположены по дугам, близким к логарифмической спирали и т. д. Один из наиболее распространенных пауков, эпейра, сплетая паутину, закручивает нити вокруг центра по логарифмическим спиралям. По логарифмическим спиралям закручены и многие галактики, в частности Галактика, которой принадлежит Солнечная система [11].



2.2 Открытие некоторых геометрических построений

"Золотым веком" греческой геометрии называют эпоху, когда жили и творили математики Архимед (287-195 гг. до н.э.), Эрастофен (275-195гг. до н.э.), Аполлоний Пергский (250-190гг. до н.э.). Измерение криволинейных образов связано с именем Архимеда. Он указал методы измерения длины окружности, площади круга, сегмента параболы и спирали, объемов и поверхностей шара, других тел вращения и др [31].

К началу XVII века математики знали такие кривые линии, как эллипс, гиперболу, параболу и т.д. однако в то время еще не было общего метода изучения линий, и потому исследование каждой кривой превращалось в сложную научную работу.

Открытия Декарта и Ферма доли в руки математиков метод для получения и изучения новых кривых – надо было написать уравнение кривой и сделать выводы, исследуя это уравнение. Сам Декарт в 1638 году придумал новую кривую, уравнение которой имеет вид x3+y3-3axy=0, a>0 (рис. 20).

Ее сейчас называют декартовым листом. Любопытно, что хотя Декарт применял уже в своей алгебре не только отрицательные, но даже мнимые числа, он не рассматривал отрицательных значений координат. Первоначально декартов лист считали симметричным относительно осей координат (рис. 21).

Окончательно форма кривой была установлена лишь через полстолетия Х.Гюйгенсом (1629-1695) и Иоганном Бернулли (1667-1748).

Декартов лист, эллипс, гипербола, парабола являются алгебраическими кривыми. Так называют кривые, уравнение которых имеет вид Р (х,у)=0, где Р(х,у) – многочлен от х и у. но уже Галилей и Декарт изучали циклоиду – кривую, описываемую точкой обода колеса, катящегося без скольжения по прямой дороге. Можно доказать, что уравнение одной арки циклоиды имеет вид x=r arcos * (r-y)/r - √2ry-y2. Так как в это уравнение входит обратная тригонометрическая функция, циклоида не является алгебраической кривой.

К неалгебраическим кривым нельзя было применять алгебраические методы, разработанные Декартом, поэтому их назвали трансцендентными кривыми (от латинского «трансценденс» - выходящий за пределы). Некоторые трансцендентные кривые были известны еще древнегреческим математикам. Например, в связи с задачей о спрямлении окружности (построении отрезка, длина которого равна длине этой окружности) Архимед построил особую спираль, определив ее на языке механики как траекторию точки, совершающей равномерное и поступательное движение по лучу, который в это же время равномерно вращается вокруг своего начала.

После того, как были открыты логарифмы, стали изучать свойства графиков логарифмической и показательной зависимостей. Задачи механики требования отыскивания формы провисшего каната (так называемой цепной линии). Поиски кривой, длина дуги которой пропорциональна разности длин векторов, проведенных в ее концы, привели к открытию логарифмической спирали [11].

В течение XVII столетия было открыто больше кривых, чем за всю предшествующую историю математики, и понадобились общие понятия, которые позволили бы единым образом трактовать и изучать как алгебраические, так и трансцендентные кривые, как тригонометрические, так и логарифмические зависимости.

Творцом ортогональных проекций и основоположником начертательной геометрии является французский геометр Гаспар Монж (1746-1818гг.). Знания, накопленные по теории и практике изображения пространственных предметов на плоскости, он систематизировал и обобщил, поднял начертательную геометрию на уровень научной дисциплины. "…Нужно научить пользоваться начертательной геометрией" - говорил Г. Монж [21].

В работе Г. Монжа "Начертательная геометрия" ("Geometric Descriptive"), изданной в 1798г., решались задачи:

1. Применение теории геометрических преобразований.

2. Рассмотрение некоторых вопросов теории проекций с числовыми отметками.

3. Подробное исследование кривых линий и поверхностей, в частности применение вспомогательных плоскостей и сфер при построении линии пересечения поверхностей.

Появление начертательной геометрии было вызвано возраставшими потребностями в теории изображений. Дальнейшее развитие начертательная геометрия получила в трудах многих ученых [21;32].


Глава 3. Практическая часть


3.1 Сущность графического образования, и его место в современном мире

Каждый выпускник школы должен иметь представление о классических и современных системах отображения информации, знать и уметь пользоваться их методами и способами отображения, применять программные средства для создания графических изображений, иметь общее представление о проектной деятельности (инженерно-конструкторской, дизайнерской, архитектурно-строительной и др.).

Под графическим образованием понимается процесс развития и саморазвития школьника, связанный с овладением графической культурой и графической грамотностью.

Графическая культура школьника — совокупность знаний о графических методах, способах, средствах, о правилах отображения и чтения информации, ее сохранения, передачи, преобразования и использования в науке, производстве, дизайне, архитектуре, экономике, общественных сферах жизни общества, а также совокупность графических умений, позволяющих фиксировать и генерировать результаты репродуктивной и творческой деятельности [28].

Графическое образование школьников направлено на подготовку грамотных в области графической деятельности выпускников школ, владеющих совокупностью знаний о графических методах, способах, средствах, правилах отображения, сохранения, передачи, преобразования информации и их использования в науке, производстве, дизайне, архитектуре, экономике и общественных сферах жизни; владеющих совокупностью графических умений, а также способных использовать полученные знания и умения не только для адаптации к условиям жизни в современном обществе, но и для активного участия в репродуктивной и творческой деятельности (научной, производственной, проектной и др.).

Цель графического образования конкретизируется в основных задачах:

• формировании представлений о графических средствах (языковых, неязыковых, ручных, компьютерных) отображения, создания, хранения, передачи и обработки информации;

• изучении и освоении методов, способов, средств графического отображения и чтения информации, используемых в различных видах деятельности;

• развитии пространственного воображения и пространственных представлений, образного, пространственного, логического, абстрактного мышления школьников;

• формировании умений применять геометро-графические знания и умения для решения различных прикладных задач;

• ознакомлении с содержанием и последовательностью этапов проектной деятельности в области технического и художественного конструирования;

• формировании и развитии эстетического вкуса;

• овладении компьютерными технологиями для получения графических изображений.

Развитие информационных технологий, большие возможности знаковых систем в передаче информации, а также необходимость адаптации человека к новой информационной среде и потоку визуальной информации выявили необходимость расширения содержания предмета «Черчение и графика» и естественного перехода на новую образовательную ступень [16;17;20].

«Черчение и графика» станет учебным предметом, в котором будут интегрироваться знания из области начертательной геометрии, метрологии, стандартизации деталей машин и механизмов, графики, компьютерной графики, проектирования, технического и художественного конструирования, технологии. Интеграция будет осуществляться на основе понимания информационной и технологической сущности каждой из областей знаний; общности методов и способов выполнения, чтения, хранения, передачи, преобразования графической информации посредством как традиционных, так и вновь созданных языковых графических систем. Понимания того, как информация может быть представлена графическими изображениями: рисунками, проекциями, видами, разрезами, сечениями, графиками, схемами, графами, наглядными изображениями, техническими рисунками, эскизами и т. д.

Содержание учебного предмета «Черчение и графика» реализуется на следующих принципиальных положениях [28]:

• необходимость графических знаний и умений для ориентации в информационном пространстве;

• общность целевой направленности методов и способов отображения и преобразования информации;

• частота используемых графических методов для визуализации информации;

• практическая направленность курса на использование полученных графических знаний и умений в различных видах деятельности;

• использование компьютерной поддержки для графического проектирования.

В результате проведения анализа всю совокупность содержания предмета «Черчение и графика» следует распределить по следующим образовательным линиям: «Типы графических изображений», «Графические системы, методы, способы, средства выполнения и чтения графических изображений», «Формообразование. Конструирование. Моделирование».

Теоретические вопросы рассматриваются на примерах геометрических образов, моделей, промышленных и художественных изделий.

3.2 Выбор практических заданий

Предлагаемые практические задания предназначены для обучения учащихся геометрическим построениям на плоских поверхностях в курсе технической графики и дизайна [2;4;6;13;14;18;22;24;26].

На основе общего содержания программы «Черчение» для средней школы разработаны задания, которые делятся на следующие разделы:

  1. Деление окружности на равные части;

  2. Сопряжение двух прямых;

  3. Спиралевидные закономерности;

  4. Циклические закономерности.

Внутри каждого из этих разделов предполагается деление на подразделы:

  1. Определение содержания геометрических построений и их применение в различных областях;

  2. Определение методов построения изображения.

При выполнении этого изображения у ребенка соединяется образовательная подготовка с творческой.

Опираясь на знания детей, учитывая их возрастные особенности и технические возможности, учитель должен в доступной форме донести до учащихся смысл задания, придерживаясь в получении знаний и умений принцип построения от легкого к трудному, от простого к сложному.

В чем состоит смысл предлагаемых заданий? В том, чтобы объяснить детям сущность геометрических построений, применяемых в той или иной области декоративного искусства, архитектуры, на примере природных явлений.

Предлагаемые интегрированные задания позволяют развить творческие способности и технические навыки на основе имеющихся знаний, получая при этом новый результат. Интегрированные задания очень эффективны на итоговых занятиях по теме, где можно проверить возможности применения знаний, приобретенных на одном предмете (например, геометрии или биологии) в творческих заданиях по другому предмету (например, черчении). Такие задания проверяют возможности ребенка и будут развивать его творческий потенциал [18].

3.4 Содержание практической работы

Практическая часть нашей работы представлена пятью заданиями.

Лист 1. Паук.

На листе представлена половина изображения паука и половина чертежа паука. Для соединения этих двух изображений использован принцип билатеральной симметрии.

По имеющемуся изображению (рисунку, фотографии) учащиеся должны выделить виды геометрических построений, присутствующих у данного организма. Так как паук имеет восемь лап, то ведущим построением будет деление окружности на 8 равных частей.

Лист 2. Подсолнух.

На листе представлена половина изображения цветка и половина его чертежа.

По имеющемуся изображению (рисунку, фотографии) учащиеся должны выделить виды геометрических построений, присутствующих у этого цветка.

В результате исследований было установлено, что семена подсолнуха расположены в цветке по принципу спирали Архимеда. А чтобы построить лепестки, надо разделить окружность на равные части. Значит, чертеж будет содержать два вида геометрических построений: деление окружности на 12 (в нашем случае) равных частей, и построение спирали Архимеда.

Характеристики

Тип файла
Документ
Размер
52,3 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6513
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее