84050 (589822), страница 2
Текст из файла (страница 2)
Например.
|-125 = -8, |-13 = -4 и т.д.
2.5. Соответствие натуральных корней и их эманаций.
Определение.
Соответствующими эманациями натурального корня n являются все эманации этого корня в положительном ряду чисел, а также все отрицательные числовые значения, обнаруженные в отрицательном ряду чисел, отличающиеся от числа n на -k9. Отрицательный числовой ряд имеет также, как и положительный ряд девять натуральных корней от 0 до -9, которые соответствуют положительным натуральным корням, как это указано выше.
Например, натуральные корни 1 и -8, 2 и -7, 3 и -6, 4 и -5, 5 и -4, 6 и -3, 7 и -2, 8 и -1, а также их эманации будут соответствующими.
Для натурального корня 0 его противоположными и соответствующими числами одновременно будут являться только его собственные эманации, образуя симметрию числового ряда. Все действия с отрицательными натуральными корнями и их эманациями соответствуют всему, что излагается о взаимодействиях в положительной числовой шкале.
2.6. Теорема 2.
Любое многозначное целое число Х можно привести к виду неизменного натурального однозначного числа t, где t = [0,1,2,...,8], путем последовательного и поэтапного сложения цифр, составляющих число Х, и/или их комбинаций вне зависимости от мест первоначальных цифр в комбинации.
Фактически, нам необходимо доказать, что натуральное однозначное число t, полученное в результате сложения сумм и/или комбинаций, равно целому остатку х, полученному в результате вычитания из числа Х целого числа девяток n9, т.е. t = х.
Рассмотрим принципы появления значности чисел. Первое число
10...0 новой значности всегда строится по принципам:
1. Число 10...0 всегда равно некоторому целому количеству девяток плюс единица:
10...0 = z9 + 1, причем z всегда имеет значение члена ряда 1,11,111,1111 и т.д. в
зависимости от значности числа 10...0.
2. Запись числа 10...0 всегда производится как некоторое количество нулей и одна единица.
Используя принцип 2, можно утверждать, что сумма цифр первого числа новой значности 1+ 0+0+0+...+0 всегда будет равна n0 + 1, т.е. равна 1.
Таким образом, можно сделать вывод, что для первого числа новой значности сумма его цифр 1+ 0+0+0...+0 =1 всегда будет равна остатку 1
целого числа 10...0 за вычетом целого числа девяток 10...0 - z9 = 1.
Докажем, что сумма цифр любого другого числа abcd...k также равна остатку за вычетом целого числа девяток.
Так как число abcd...k мы можем разложить на на целое число десятков, сотен, тысяч и т.д. плюс остаток, то мы можем число abcd...k представить в виде:
abcd...k = а(w9+1) + b(q9+1) + c(v9+1) + d(j9+1)...+k = аw9+a + bq9+b + cv9+c + dj9+d...+k
Мы получили остатки a, b, c, d...k. Число abcd...k, как мы видим, составлено из этих же цифр. Таким
образом, сумма цифр a+b+c+d+...+k числа abcd...k также равна остатку х за вычетом целого числа девяток ______
abcd...k = n9 +x, где х= a+b+c+d+...+k, n9= аw9+bq9+cv9+dj9.
В том случае, если сумма цифр a+b+c+d+...+k больше девяти, то из полученного в результате сложения числа мы вычленим целое число девяток е и присоединим его к n9.
Таким образом, можно утверждать, что запись цифр числа abcd...k следует считать записью остатков от вычитания из десятков, сотен, тысяч и т.д. целого числа девяток. ______
При различных комбинациях цифр числа abcd...k и дальнейшем их сложении сумма цифр не изменится, так как сумма остатков не изменится от перестановки цифр - остатков, обозначающих число десятков, сотен и т.д.
Таким образом, любое многозначное целое число Х можно привести к виду неизменного натурального однозначного числа t, где t = [0,1,2,...,8], путем последовательного и поэтапного сложения цифр, составляющих число Х, и/или их комбинаций вне зависимости от мест первоначальных цифр в комбинации и число t будет равно сумме остатков от вычитания из десятков, сотен, тысяч и т.д. целого числа девяток или последнего однозначного числа в любой другой системе счисления.
Раздел 3. Действия с эманациями и натуральными корнями
k
Для удобства действий с эманациями присвоим этому действию знак Эn , означающий k-ую эманацию натурального корня n.
3.1. Сложение
Пример.
Для рассмотрения операции сложения, рассмотрим сумму двух чисел 245 и 28.
245 + 28 = 273.
Извлечем натуральные корни из слагаемых:
____ ____
|245 = 2 и |28 =1.
Сложим натуральные корни слагаемых:
2 + 1 = 3, и извлечем натуральный корень из полученной в начале решения суммы:
____
|273 = 3.
Во всех примерах данного раздела будем рассматривать операции с эманациями натурального корня 0, чтобы показать что при операциях с такими числами они "ведут себя" аналогично 0.
Пример.
Сложить числа 198 и 3594 и их натуральные корни.
______ ______ ______
0 |3594 + 3|3594 = 3 |3792
Как видно из примера, натуральный корень числа 198 не повлиял на результат сложения натуральных корней слагаемых, т.е. мы получили одно из свойств нуля для его эманаций.
| Закон аналогий для сложения многозна- чных чисел и их натуральных корней | Сумма натуральных корней слагаемых чисел x и y равна натуральному корню их суммы ___ ___ ___________ n|х + k |у = (n+k) | (x + y) |
3.2. Вычитание.
Рассмотрим три условия для выражения х - у = z.
__ __
1. Если х > у и |х > |у
Например, 294 - 112 = 182
____ ____ ____
|294 = 6, |112 = 4 Разница натуральных корней 6 - 4 = 2 и |182 = 2
__ __
Таким образом, при выполнении условияусловия |х > |у для выражения х - у= z верно утверждение, что разница натуральных корней вычитаемых чисел х и у равна натуральному корню из их разницы.
___ ____ _________
n|х - k |у = (n-k) |(x-y)
__ __
2. Если х > у ,а |х < |у
Например, 190 - 52 = 138
____ ___ ____
|190 = 1, |52 = 7 Разница натуральных корней 1 - 7 = -6, но натуральный корень разницы |138 = 3.
Для приведения этого неравенства к виду равенства достаточно заменить больший натуральный корень числа у на соответствующее ему в эманационном ряду числа у отрицательное значение.
Например, заменим натуральный корень 52, равный 7, на соответствующий корень, равный -2. Тогда разница натуральных корней для выражения 190 - 52 = 138 будет 1 - (-2) = 3.
Для удобства можно эту операцию производить только для натурального корня разницы. Например, замена
____
натурального корня разницы |138 = 3 на соответствующее значение натурального корня, равное -6, приведет нас к равенству 1 - 7 = -6.
__ __
Таким образом, при условии |х < |у для выражения х - у = z разница натуральных корней вычитаемых чисел х и у равна натуральному корню из их разницы при применении соответствующих отрицательных эманаций числа у или числа z.
__ __
3. Если х |у
Например.
52 - 190 = -138
____ ____
|52 = 7, |190 = 1 Разница натуральных корней 7 - 1 = 6,
_____
но |-138 = -3. При применении принципа замены натурального корня на соответствующее ему противоположное значение равенство действительно. Так, при замене -3 на 6 уравнение верно.
Необходимо отметить свойство эманаций нуля в операции вычитания.
___
Если в выражении х - у = z |у = 0, то натуральный корень разницы z, будет равен натуральному корню числа х, т.е. не изменится, что указывает на проявление эманациями нуля в операции вычитания свойств нуля.
Например. Найдем разницу 155 - 72 = 83
____ ____ ____
2|155 - 0 |72 = 2 |83
__ __
4. Если х < у и |х < |у
Например.
____ ____ ____
5|77 - 8 |98 = -3 |-21
Таким образом, для данного условия верно утверждение, что разница натуральных корней вычитаемых чисел равна натуральному корню их разницы.
3.3.УМНОЖЕНИЕ.
Пример. Умножить чмсла 154 и 32 и их натуральные корни:
154 * 32 = 4928
_____ ___
|154 = 1 и |32 = 5;
Перемножим корни:
______ _____ ____ ______
5 * 1 = 5 и 5|4928 , т.е.1 |154 * 5 |32 = 5 |4928 .
Пример. Умножить числа 27 и 85 и их натуральные корни.
27 * 85 = 2295.
___
|85 = 4.
3
Число 270 является третьей эманацией 0, т.е. Э = 27.
_____
Но и число 2295 является эманацией 0, только 255-ой. => 27 * 85 = 0|2295.
Очевидно, что эманации нуля проявляют его свойства при их умножении на другие числа, т.е. в результате умножения дают нуль.
Свойство. Натуральный корень из произведения, одним из множителей которого является эманация нуля, всегда будет равен нулю.
р k n
Эо * Эm = Э о
Закон умножения натуральных корней. Натуральный корень произведения множителей равен произведению натуральных корней этих множителей.
___ ___ _______
n |х * k|у = n*k |x*у
3.4. Деление.
1. Деление эманаций натурального корня n на число у.
Чтобы выяснить, какие эманации натурального корня n делятся без остатка на число у, необходимо выяснить номер эманации числа, которое первым в эманационном ряду натурального корня n делится без остатка на число у.
Обозначим этот номер эманации через N.
Например, в эманационном ряду натурального корня n=2: 2,11,20,29, 38,47,56 на число у=19 первой делится эманация 38 с номером эманации N = 4.
На число у без остатка будут делиться эманации натурального корня n, номер эманации которых равен
Nэ = N + ау, где а - любое целое число, т.е. эманации вида Эх = 9(N + ау) + х.
Например. Выясним, какие эманации n=1 без остатка делятся на число 4. Номер эманации n=1, которая первой делится на число 4 без остатка N = 3, соответствующий числу 28. Таким образом на 4 без остатка будут делиться все эманации единицы вида:
Э1 = 9(3 + а4) + 1 = 28 + 36а.
Если а = 2, то Э = 9(3 + 2*4) + 1 = 100.
Число 100 действительно без остатка делится на 4, т.к. 100 : 4 = 25.
Для определения эманации числа х, которая первой делится на число у, введем равенство а = 0.
Правило 2. При делении последовательно-возрастающих эманаций натурального корня n на число у, получаемые в результате деления числа будут являться членами некоторого эманационного ряда числа z.
Таким образом, число а в указанной выше формуле показывает номер эманации частного.
Например. Выясним, какие эманации числа 7 будут делиться на число 13. Номер эманации первого деления
N = 5.
Тогда на число 13 без остатка будут делиться эманации числа 7 вида Э7 = 9(5 + а13) + 7.
При а = 0 Э7 = 9(5 + 0*13) + 7 = 52, 52 : 13 = 4,
при а = 1 Э7 = 9(5 + 1*13) + 7 = 169, 169 : 13 = 13,
при а =2 Э7 = 9(5 + 2*13) + 7 = 286, 286 : 13 = 22.
В результате такого деления мы получили эманационный ряд числа 4: числа 4, 13,22.
2. Деление эманаций натурального корня n на эманации натурального корня k.
Для того, чтобы выяснить, какие последовательно-возрастающие эманации натурального корня n делятся на последовательновозрастающие эманации натурального корня k без остатка, необходимо знать:
а) номер эманации натурального корня n, которая первой делится на натуральный корень k. Обозначим ее через P.
б) постоянную дельту d - разницу между каждым следующим и данным номером эманаций натурального корня n, делящихся на эманации натурального корня k.
Дельта d = n:k.
На последовательно-возрастающие эманации натурального корня k будут делиться последовательно- возрастающие эманации натурального корня n c номерами эманаций вида Nэ = P + dc,
где c - номер эманации натурального корня k, на которую делится данная эманация натурального корня вида
Эх = 9(P + dc) + х.
Например.
а) выясним, какие эманации натурального корня 1, будут делиться без остатка на эманации натурального корня 5.
Номер эманации первого деления P = 1, постоянная дельта d = 2. Таким образом на эманации числа 5 будут делиться эманации натурального корня 1 вида
Э1 = 9(1 + 2*с) + 1.
При а = 1, Э1 = 9(1 +2*1) + 1 = 28.
Данная эманация натурального корня 1 делится на первую эманацию натурального корня 5, т.е. на 14.
28 : 14 = 2.
б) выясним, какая эманация числа 5 делится на третью эманацию числа 4, т.е. на 31. Номер эманации первого деления P = 3, d = 8.
Э5 = 9(3 + 3*8) + 5 = 248, 248 : 31 = 8, т.е. на 4-ю эманацию натурального
корня 4 - число 31 делится число 248, являющееся эманацией натурального корня 5.
Правило 3. При вышеуказанном принципе деления частное остается постоянным.
Если мы знаем номер эманации натурального корня n - N, эманация которого первой делится на некоторую эманацию натурального корня k - Э и знаем постоянную дельту d, то номер эманации первого деления N1 эманации натурального корня n на другую эманацию натурального корня k - Э1 можно записать в виде:
N1 = N + d(r - b), где r - номер эманации натурального корня k - Э1;
b - номер эманации натурального корня k - Э.
Например. При делении эманаций натурального корня 8 на эманации натурального корня 5 постоянная дельта d = 7.
а) если мы хотим узнать номер эманации первого деления на число 23 эманаций натурального корня числа 8, составим следующую формулу:
Nэ = 3 + 7(2 - 0), где 3 - номер эманации первого деления эманаций натурального корня 8 на натуральный корень 5 без остатка, 2 - Nэ числа 23, 0 - Nэ натурального корня 5.
Таким образом Nэ = 3 + 7(2 - 0) = 17.
Тогда, эманация натурального корня 8 с Nэ = 17 равна 161 = 17*9 + 8
Т.е., число 161 первым в эманационном ряду натурального корня 8 будет делиться на число 23:
161 : 23 = 7
И далее, по формуле деления эманаций натурального корня n на число у, мы можем выяснить все эманации числа 8, делящиеся без остатка на число 23.















