64094 (589081), страница 3

Файл №589081 64094 (Структурный синтез устройств с мультидифференциальными операционными усилителями) 3 страница64094 (589081) страница 32016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

В приведенных соотношениях векторы имеют только одну единицу на позиции, соответствующей номеру i-го усилителя. Другие их компоненты равны нулю. Таким образом,

(48)

Дифференцированием можно определить активную чувстви-тельность модели

, (49)

где локальные передаточные функции , определяются аналогично с учетом влияния частотных свойств активных элементов структуры.

, (50)

. (51)

Приведенные соотношения устанавливают связь активной составляющей чувствительности схемы с границами ее динамического диапазона. Действительно, спектральная плотность мощности шума на выходе цепи определяется как

, (52)

где – эквивалентная спектральная плотность, приведенная ко входу i-го МОУ, а максимальный уровень выходного напряжения

;

, (53)

при условии, что . В противном случае и максимальное выходное напряжение активных элементов совпадают. Таким образом, уменьшение модуля активной составляющей чувствительности и расширение диапазона рабочих частот схемы за счет уменьшения модуля локальной функции (51) приводит к «перенапряжению», которое и уменьшает максимальный уровень выходного сигнала. Следовательно, единственным способом расширения диапазона рабочих частот и динамического диапазона схемы является уменьшение модуля локальной функции (50) при сохранении неизменными функций (51) и .

4. Собственная компенсация влияния частотных свойств мультидифференциальных ОУ

Соотношение (44) с учетом структуры идеализированной передаточной функции

(54)

можно интерпретировать сигнальным графом, изображенным на рис. 7. С учетом выражений (54), (44), (46) и (47) можно получить векторный сигнальный граф (рис. 8) системы с учетом влияния i-го МОУ. Наличие узла

(55)

не изменяет структуру и смысл локальной функции, т.к. любую компоненту вектора можно рассматривать как равную единице разность передач пассивной части цепи на инвертирующий и неинвертирующий входы.

Из рассмотрения векторного сигнального графа следует важный в теоретическом отношении вывод: изменение локальных передаточных функций и при фиксированной передаточной функции возможно тогда и только тогда, когда дифференциальный вход xi i-го МОУ связан с дополнительным входом схемы.

Для доказательства этого утверждения введем вектор

, . (56)

В этом случае рассматриваемая структура будет описываться следующей системой уравнений:

(57)

где .

Рис. 7. Сигнальный граф электронной схемы при влиянии i-го МОУ

Рис. 8. Векторный сигнальный граф электронной системы

при влиянии i-го входа МОУ

Решение системы уравнений (57) приводит к следующему результату:

, (58)

.

При обращении матрицы воспользуемся методом пополнения:

. (59)

Следовательно, передаточная функция структуры

, (60)

где ; (61)

. (62)

Таким образом, введение вектора W обеспечивает изменение только локальных функций и , со-храняя при этом неизменными передаточную функцию идеализированной системы Фu(p) и передаточную функцию на выходе i-го активного элемента Fi(p). Изменение знака в (61) и (62), как это видно из (56), достигается за счет дифференциальных свойств активных элементов схемы.

Полученный результат имеет достаточно простую физическую трактовку. При идеальном активном элементе ( ) дифференциальный входной сигнал xi не зависит от частоты, а при бесконечном статическом коэффициенте усиления этот сигнал равен нулю и дополнительный контур обратной связи прекращает свое действие, что в конечном счете и сохраняет неизменным не только идеализированную передаточную функцию, но и локальную функцию Fi(p). Таким образом, получение топологических условий собственной компенсации является достаточным.

Покажем их единственность. Из соотношений (46) и (57) следует, что для сохранения функций Фu(p) и Fi(p) необходимо сохранить не только матрицы В и В, но и набор векторов Т, А, А, . Единственная незафиксированная составляющая набора предложенных функций ui связывает вход i-го активного элемента источником x. Действительно,

, (63)

.

Этот вывод подтверждается и рассмотрением векторного сигнального графа (рис. 8). Создание параллельного пути передачи от узла xi к выходу схемы возможно только его соединением с дополнительным входом схемы и, следовательно, как это видно из (21), со входами активных элементов. Таким образом, сформулированное условие является единственным.

Ответ на вопрос об уровне компенсации в общем случае остается открытым, так как зависит от структуры матрицы [В + В] и вектора W. Из (63) видно, что в общем случае полную компенсацию обеспечить невозможно в силу неосуществимости условия

. (64)

В этой связи применение настоящего результата при решении практических задач связано с анализом структуры поправочных полиномов электронных схем различного функционального назначения.

5. Звенья активных фильтров с мультидифференциальными ОУ

При построении активного интерфейса современных систем радиоэлектронного назначения особое место занимают активные фильтры, обеспечивающие предварительную частотную селекцию сигналов сенсорных элементов. Именно точность реализации необходимых частотных характеристик и динамический диапазон этих устройств непосредственно определяют основные качественные показатели многих микрокомпьютерных систем автоматического управления и технической диагностики. В основе построения как многопетлевых, так и каскадных фильтров лежат звенья, реализующие передаточную функцию второго порядка. Использование принципа собственной компенсации влияния площади усиления дифференциальных ОУ практически всегда связано с увеличением в схеме их числа и, следовательно, к увеличению потребляемой мощности [9]. Покажем эффективность использования в их структуре мультидифференциальных ОУ.

В общем случае звено второго порядка должно реализовать следующую передаточную функцию:

, (65)

где и – соответственно частота и затухание полюса.

Влияние площади усиления ОУ приводит к приращению знаменателя этой функции на следующий полином:

, (66)

где – коэффициенты, обратно пропорциональные площади усиления ОУ.

Именно поэтому в рабочем диапазоне частот это приводит к изменению как затухания, так и частоты полюса звена:

, (67)

. (68)

Приведенные соотношения показывают, что относительное изменение затухания полюса пропорционально реализуемой добротности и для высокоселективных устройств может достигать больших значений, включая и потерю устойчивости. В то же время, как это хорошо известно из теории фильтров, отклонение частоты полюса от желаемого значения в раз сильнее влияет на изменение реализуемых частотных характеристик. Именно поэтому обеспечение высоких качественных показателей связано со стабилизацией как затухания, так и частоты полюса звеньев второго порядка.

Рассмотрим основные подходы к решению этой задачи. Из (47) и (62) видно, что в рамках принципа собственной компенсации относительные изменения полинома

(69)

должны компенсироваться введением дополнительных связей, образующих следующее приращение

. (70)

Тогда

, (71)

. (72)

Соотношения (71) и (72) показывают, что выбором и знаков ki можно обеспечить любой уровень собственной и взаимной компенсаций влияния площади усиления активных элементов на частоту и затухание полюса. Вытекающие из этих выражений функциональные признаки приведены в табл. 1.

Приведенные результаты показывают, что в случае реализации на выходе i-го ОУ передаточной функции

. (73)

возможна одновременная компенсация изменений частоты и затухания полюса. Однако в этом случае дополнительная обратная связь характеризуется положительным возвратным соотношением, что при большой добротности полюса может существенно уменьшить запас устойчивости. Именно поэтому первый вариант компенсации изменения затухания полюса (табл. 1) более предпочтителен [5].

Рассмотрим применение полученных результатов для построения схемы звена второго порядка с собственной и взаимной компенсацией. На рис. 9 приведена принципиальная схема низкочувствительного звена полосового типа. Указанные на принципиальной схеме соотношения параметров пассивных элементов являются оптимальными по критерию влияния площади усиления ОУ. В этом случае

, (74)

где ;

; (75)

; (76)

(77)

При подаче входного сигнала на неинвертирующий вход первого ОУ на выходах ОУ реализуются следующие передаточные функции:

; (78)

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6516
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее