63035 (588884), страница 3

Файл №588884 63035 (Расчет спутниковой линии связи Алматы -Лондон) 3 страница63035 (588884) страница 32016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

a = b/(b-1), b = а/(а-1). (8)

Выражение (8) позволяют распределить заданное отношение (Рсш); по двум участкам линии связи. Например, задавшись превышением отношения сигнал-шум на участке спутник — Земля, равным 1 дБ (b=1,26), найдем, что необходимое превышение на участке Земля — спутник должно составлять 7 дБ (а≈5). Приведенное распределение коэффициентов запаса а и b предполагает, что полосы шумов бортового ретранслятора и земного приемника равны; если Δfш.з< Δfш.б, то мощность шума на входе бортового приемника следует вычислять в полосе Δfш.з.

С учетом изложенного уравнения для линии спутниковой связи, состоящей из двух участков, окончательно примут вид [3]:

для участка Земля — спутник

Pпер.з.=(16π2d12L1допкТб.Δfш.з/12Gпер.з.Gпр.б.ŋпер.з.ŋпр.б.)а(Рсш) ∑, (9)

для участка спутник — Земля

Pпер.б.=(16π2d22L2допкТб.Δfш.з/22Gпер.б.Gпр.з.ŋпер.б.ŋпр.з.)b(Рсш), (10)

4 Прохождение сигналов в системах космической связи

На распространение радиоволн на линиях Земля — космос (или космос — Земля) заметное влияние оказывает атмосфера Земли — как ионосфера, так и тропосфера. Это влияние особенно заметно на частотах от 10 ГГц и выше, а также при малых углах прихода волны (малых углах места антенны земной станции)[4].

Влияние ионосферы может проявляться в поглощении энергии, дисперсии сигнала, т. е. неравномерном времени задержки в полосе, «мерцании» сигнала, вызванном рассеянием локальными нерегулярностями концентрации электронов, вращении плоскости поляризации линейно поляризованной волны (фарадеево вращение). Все эти эффекты обратно пропорциональны квадрату частоты сигнала, а дисперсия — кубу частоты. Поэтому космические службы, работающие на частотах выше 1 ГГц, могут не учитывать влияние ионосферы, за исключением вращения плоскости поляризации.

Изменение вращения носит регулярный характер, подчиняющийся суточному и сезонному ходу, циклам солнечной активности, а также подвержено значительным и непредсказуемым отклонениям от регулярного хода в малых процентах времени. Максимальная амплитуда вращения на частоте 1 ГГц может достигать 108° при угле места 30°, а на частотах 4,6 и 1,2 ГГц максимальные амплитуды достигали 9, 4 и 1° соответственно [5]. Применение круговой поляризации волны, как и в нашем случае позволяет полностью устранить влияние этого явления.

Изменения уровня сигнала могут быть вызваны интерференцией прямой волны и волны, отраженной от земной поверхности

Рисунок 4.Интерференция прямой волны и волны, отраженной от земной поверхности



Влияние тропосферы на распространение радиоволн на линиях Земля — Космос может проявляться во многих явлениях.

Изменения индекса рефракции в тропосфере и его нерегулярности могут вызывать дефокусировку луча антенны, изменения угла прихода волны, уменьшение эффективного усиления антенн, возникновение многолучевой структуры сигнала и «мерцание». Дефокусировка луча вызывает потери сигнала менее 0,4 дБ даже при угле места 3° и больших изменениях рефракции. По данным измерений изменения угла прихода волны, вызванные рефракцией, составляли около 0,65°, 0,35°. и 0,25° при углах места 1°, 3° и 5° соответственно в морской тропической атмосфере. В полярном континентном климате соответствующие значения были 0,44°; 0,25° и 0,17° [4]. С этим явлением можно не считаться, поскольку антенны земных станций обычно снабжены устройствами автоматического или ручного наведения по максимуму сигнала.

Явления многолучевости и «мерцания» сигнала не могут оказывать сколько-нибудь существенного влияния на его уровень и поэтому не учитываются. Наиболее существенное влияние тропосферы проявляется в поглощении энергии радиоволн в газах атмосферы, поглощении и деполяризации волны в гидрометеорах, особенно в дожде.

4.1 Расчет ослабления уровня сигнала в атмосфере

Основное поглощение энергии сигнала вызывают кислород и водяной пар. На рисунке 5 показаны теоретические зависимости погонного ослабления уровня сигнала у, дБ/км, от частоты при стандартном давлении воздуха, температуре 20°С и концентрации р водяного пара 7,5 г/м3.

На линиях связи Земля — космос волна проходит через всю толщу тропосферы, и на ее пути содержание кислорода и водяного пара существенно меняется, поэтому для расчета ослабления сигнала применяется концепция эквивалентной высоты кислорода и водяного пара, в пределах которой их содержание принимается постоянным.

Рисунок 5. - Зависимости погонного ослабления уровня сигналов от частоты при стандартном давлении воздуха, температуре 20° С и концентрации водяного пара 7,5 г/м3

Величина ослабления сигнала Аа, дБ, определяется следующими формулами

[5]:

Аа=(һо2γо2+һн2оγ2о)/sin Ө при Ө>10 (11)

Aa=√Re cosӨ{γHо2√ho2Fo2+ γHо2√hH2oFh2o} при 0<Ө<10, (12)

где Ө—угол места антенны земной станции;

Rе —эквивалентный радиус Земли с учетом рефракции (8500 км);

γо2—погонное ослабление в кислороде, дБ/км, определяется по графику на рисунке 5 в зависимости от частоты;

γ2O —погонное ослабление в водяном паре, дБ/км, определяется по р/7,5, учитывающее влагосодержание водяного пара р, которое может отличаться от значения 7,5 г/м3, указанного на графике;

Һо2— эквивалентная высота кислорода, км; Һo2=6 км при Г<50 ГГц; ҺН2О - эквивалентная высота водяного пара, км.

һН2О=2,2+3/[3+(f-22,3)2]+0,3/[1+(f-118,3)2+1/[1+(f-323,8)2], (13)

FO2H2O=[0,661tg Ө√Re/hO2,HO2+0,339√(tgӨ/hO2)2+5,51] (14)

В приложении В на мировой карте показаны среднемесячные значения концентрации водяного пара р атмосферы в августе. Эти значения можно использовать в расчетах как наибольшие.

Найдем величины ослабления сигнала, вызванного поглощением энергии радиоволн в газах атмосферы, для обоих участков, используя формулы (11 - 14).

Для участка 1:

Из рисунка 5: γO2=0,007 дб/км,

γН2О=0,003*10/7,5=0,004 дБ/км,

ҺН20=2,2+3/[3+(6383-22,3)2]+0,3/[1+(6383-118,3)2]+1/[1+(6383323,8)2]=2,2км.

Тогда: Аа=(6*0,007+2,2*0,004)/sin38,5=1,02 что соответствует 0,08 дБ .

Для участка 2

γO2=0,007 дб/км,

γH2O=0,003* 10/7,5=0,004 дБ/км,

һH2O=2,2+3/[3+(3794-22,3)2]+0,3/[1+(3794-118,3)2]+1/[1+(3794-23,8)2]=2,2 км,

РO2=[0,661 tg8 √8500/6 +0,339√(tg√8500/6)2 +5,51]=0,18,

РH2O=[0,661 tg8 √8500/2,2 +0,339√(tg√8500/6)2 +5,51]=0,11.

Тогда:

Аа=√8500соs8 [0,007 √6 0,18+0,004 √2,2 0,11 ]=0,34 или -4,67 дБ.

4.2 Расчет ослабления уровня сигнала, в зоне дождя

Ослабление уровня сигнала при прохождении радиоволн через зону дождя вызвано рассеянием электромагнитной энергии частицами, при этом каждая частица рассеивает энергию в разных направлениях, вследствие чего энергия, приходящая в точку приема, уменьшается. Кроме того, энергия поглощается в частицах дождя, что вызывает ослабление уровня сигнала. Интенсивность рассеяния и поглощения зависит от количества частиц в единице объема, отношения размеров этих частиц к длине волны, размеров области, занятой частицами, и их электрических свойств, зависящих от температуры. Количество частиц в единице объема и их размеры характеризуются интенсивностью дождя.

Интенсивность дождя различна в разных географических районах и в разное время года. В приложении Г, взятом из Отчета 563-—2 МККР, на мировой карте показаны дождевые климатические зоны, обозначенные буквами от А до Р, а в таблице данного же приложения приведены значения интенсивности дождя, превышаемые в указанные проценты времени среднего года. Лондон относится согласно карте к зоне F, тогда согласно таблице в приложении В, интенсивность дождя на участке ИСЗ - ЗС1 составляет Іт = 28 мм/ч.

В приложении Д на карте СССР показаны дождевые климатические районы, обозначенные цифрами от 1 до 29, а в таблице 3.2 [5] даны значения интенсивности дождя, превышаемые воопределенном проценте времени «худшего» месяца. Согласно упомянутым картам и таблице, для участка ЗС 1 - ИСЗ интенсивность дождя равна Іт=22 мм/ч.

На рисунке 6, показаны зависимости погонного ослабления сигнала в зоне дождя γд частоты и интенсивности дождя [5].

Чтобы определить ослабление сигнала в зоне дождя на линии Земля — космос (или Космос — Земля), нужно знать длину пути сигнала в зоне дождя. Очевидно, уровень зоны дождя определяется высотой изотермы 0°С (или уровнем замерзания), ниже которой ледяные капли дождя переходят в жидкую фазу. Согласно Отчету 563 — 2 МККР средняя высота нулевой изотермы определяется формулой (в километрах) [5]:

ҺF=5,1-2,15lg(1+10)(ψ-27)/25, (15)

где ψ — широта земной станции в градусах.

Высота дождя определяется умножением Һf на эмпирический коэффициент, который учитывает, что в тропических зонах высота дождя часто значительно ниже уровня замерзания:

Һд=С*һF, (16)

где С=0,6 при 0°≤│ψ│<20°;

С=0,6+0,02(│ψ│-20) при 20°≤│ψ│≤40°

С=1 при │ψ│>40°

Необходимо также учесть пространственную неравномерность дождя в горизонтальном направлении. В Отчете 564—2 МККР предложен следующий метод расчета ослабления сигнала в зоне дождя [5]:

а) определяется высота нулевой изотермы, км, в зависимости от широты
станции по (16);

б) определяется высота дождя, км, по (17);

в) определяется длина пути сигнала, км, по наклонной трассе от станции до высоты дождя (км):

dд=2(һд-һо)/[sin2Ө+2(һд-һо)/Rc] 1/2+sinӨ при Ө< 10,

dд=(һд-һо)/sinӨ при Ө> 10, (17)

где Һ0— высота станции над уровнем моря;

Ө- угол места антенны;

Rc=8500 км — эквивалентный радиус Земли;

г) горизонтальная проекция наклонной трассы, км,

dG=dдcosӨ (18)

д) фактор уменьшения, учитывающий неравномерность дождя для 0,01% времени,

r0.01=90/(90+4dG); (19)

е) определяется интенсивность дождя Іm, мм/ч, превышаемая в 0,01% среднего года (с временем интеграции 1 мин) для климатического района, где находится станция;

ж) определяется погонное ослабление сигнала в зоне дождя үд, дБ/км, для данной частоты сигнала и интенсивности дождя по графикам на рисунке 6;

з ) определяется ослабление сигнала в дожде, дБ, превышаемое в 0,01 % среднего года,

Ад0.01дdдr0.01. (20)

Рисунок 6. Погонное ослабление сигнала взоне дождя в зависимости от частоты

Используя вышепривиденный метод найдем значения ослабления в зоне дожде для обоих участков.

Для участка 1:

һғ=5,1-2,151§(1+10)(43,13-27)/25=3,52 км,

һд=1*3,52=3,52км,

dд=(3,52-0,87)/sin38,5=4,26 км,

dG=4,26соs538,5=3,33 км,

r0.01=90/(90+4*3,33)=0,87,

Іm=22 мм/ч,

γд=0,07дБ=1,02,

Ад0.01=1,02*4,26*0,87=3,78 или 5,77 дБ .

Для участка 2:

һғ=5,1-2,151§(1+10)(51,.30-27)/25=2,9км,

һд=1*2,9=3,52км,

dд=2(2,9-0,2)/sin2Ө+2(2,9-0,2)/8500]1/2+sin8=12,86км,

dG =12,86соs8=12,73 км,

r0.01=90/(90+4*12,73)=0,64,

Іm=28 мм/ч,

γд =0,12 дБ=1,03,

Ад 0.01=1,03*12,86*0,64=8,48 или 9,28 дБ.

Таким образом, дополнительные потери на участках линии связи обусловлены главным образом влиянием двух факторов, рассмотренных выше. Их можно определить по формуле:

Для участка 1 :

Lдоп.1а1д1,

Lдоп.1а1д1=1,02*3,78=3,85 или 5,85 дБ,

Для участка 2:

Lдоп.2а2д2=0,34*8,48=2,9 или 4,61 дБ.

5 Расчет шумов

5.1 Расчет шумов

При расчете энергетики спутниковых радиолиний важно определить полную мощность шумов, создаваемых на входе приемного устройства спутника и земной станции различными источниками. Как показано в § 3.2,

мощность шума на входе приемника может быть определена по формуле (5).

Полная эквивалентная шумовая температура приемной системы, состоящей из антенны, волноводного тракта и собственно приемника, пересчитанная ко входу приемника [5]:

ТАŋво(1-ŋв)+ТПр, (21)

где ТА — эквивалентная шумовая температура антенны;

Т0 — абсолютная температура среды (290 К);

Тпр—эквивалентная шумовая температура собственно приемника,

обусловленная его внутренними шумами;

ŋв—коэффициент передачи волнового тракта.

Эквивалентная шумовая температура антенны может быть представлена в виде составляющих:

ТА= Тка3а.зш.Аоб. (22)

которые обусловлены различными факторами: приемом космического радиоизлучения- Тк; излучением атмосферы с учетом гидрометеоров - Та;

излучением земной поверхности, принимаемым через боковые лепестки антенны — Т3; приемом излучения атмосферы, отраженного от Земли — Та.3; собственными шумами антенны из-за наличия потерь в ее элементах—ТШ.А;

влиянием обтекателя антенны (если он имеется) — Тоб. Общая методика, определения этих составляющих основана на том, что антенна, находящаяся в бесконечном объеме поглощающей среды с однородной кинетической температурой, при термодинамическом равновесии поглощает и переизлучает мощность, равную мощности излучения. В этом случае

ТА=(1/4π)Tя(β,ψ)G(βψ)dΩ

где Tя(β,ψ) — яркостная температура излучения в направлении β,ψ в сферической системе координат;

G(βψ)— усиление антенны (относительно изотропного излучателя) в том же направлении.

Понятие «яркостная температура» вводится для характеристики источников излучения; она определяется как температура абсолютно черного тела, имеющего на данной частоте и в данном направлении такую же яркость, как рассматриваемый источник.

Для характеристики источников излучения с неравномерным распределением яркостной температуры используется понятие усредненной или эффективной температуры излучения

Tср=(1/Ωи) Tя(β,ψ)dΩ

где Ωи — телесный угол источника излучения.

Если угловые размеры источника излучения больше ширины главного

лепестка диаграммы антенны Ωи, то Тсря, в противном случае

ТсряΩиА (23)

Для упрощения последующих расчетов примем усиление антенны в пределах главного лепестка постоянным и равным Gгл, а в пределах задних и боковых лепестков также постоянным и равным Gбок; тогда

ТA=G гл./4π Tя(β,ψ)dΩ (1/4π)∑∫G бок.i Tя(β,ψ)dΩ

Решая это выражение для всех составляющих шума (22) с учетом (23),

получим для земной антенны

ТА=Тя.к(β)+Тя.а(β)+с(Тя,+Тя.а,)+ТшАоб(β), (24)

для бортовой антенны

ТA.б=Тя.ая.з+2сТя.кША, (25)

где с — коэффициент, учитывающий интегральный уровень энергии боковых лепестков.

Количественная оценка величины с для различных типов антенн в зависимости от формы облучения поверхности зеркала антенны с=0,1 ... 0,4 [5].

Как следует из (24), первая составляющая температуры шумов антенны определяется яркостной температурой космического пространства (изофоты, дающие количественную оценку Тяк). Основу его составляет радиоизлучение Галактики и точечных радиоисточников (Солнца, Луны, планет и некоторых звезд).

Частотная характеристика усредненных по небесной сфере значений Тя.к показана на рисунке 7, из которого следует, что космическое излучение существенно на частотах ниже 4... 6 ГТц; максимальное значение на данной частоте отличается от минимального в 20... 30 раз [5], что обусловлено большой неравномерностью излучения различных участков неба; наибольшая яркость наблюдается в центре Галактики; имеется также ряд локальных максимумов. Следует отметить, что излучение Галактики имеет сплошной спектр и слабо поляризовано; поэтому при приеме его на поляризованную антенну (с любым видом поляризации) можно с достаточной степенью точности считать, что принимаемое излучение будет половиной интенсивности (т. е. принимается 1/2 всей мощности излучения, попадающей в раскрыв антенны). На том же рисунке показан вклад излучения Солнца в спокойном состоянии (в годы минимума активности) и в состоянии «возмущения», свойственного годам максимума активности. Солнце — самый мощный источник радиоизлучения и может полностью нарушить связь, попав в главный лепесток диаграммы направленности антенны. Однако вероятность такого попадания мала.


Рисунок 7-Частотная зависимость яркостной температуры Галактики, Солнца и атмосферы

Следует отметить, что спутник довольно редко проходит через центр солнечного диска, а обычно пересекает его по линиям, смещенным относительно центра. Точная дата и время «засветки» земных антенн солнечным диском обычно рассчитывают по данным орбиты ИСЗ и сообщают земным станциям.

Следующий по мощности радиоисточник—Луна — практически не может нарушить связи, так как ее яркостная температура не более 220 К [5]. Остальные источники (планеты и радиозвезды) дают существенно меньший вклад; вероятность встречи антенн с этими источниками меньше, чем с Солнцем, так как угловые размеры их малы.

Радиоизлучение земной атмосферы имеет тепловой характер и в полной мере обусловлено рассмотренным в предыдущем разделе поглощением сигналов в атмосфере. В силу термодинамического равновесия среда (атмосфера) излучает такое же количество энергии на данной частоте, которое поглощает соответственно

Тя.а а.Ср. (Lа-1)Lа

Как показывают расчеты атмосферы, средняя термодинамическая температура атмосферы для углов места β>5° в рассматриваемых диапазонах частот

Та.ср=Т≈То-32≈260 К.

Влияние осадков можно учесть по той же методике, т. е. определить Тя.а через потери в дожде Ад. Хотя ряд исследований показывает, что непосредственная корреляция между интенсивностью дождя и температурой неба невелика (т. е. может наблюдаться повышение шумовой температуры неба из-за дождевых туч, когда собственно дождь не выпадает), тем не менее корреляция с многолетней статистикой дождя все же имеется.

Раздельное вычисление температуры спокойного неба и температуры дождя с последующим их суммированием приведет к ошибке (примерно удвоит результат), поэтому вычисление следует проводить по формуле

Тя.а=Та.сраАд-1)/АаАд. (26)

Максимальная температура шумов неба не превышает 260 К и начинает играть существенную роль в диапазонах частот выше 5 ГГц.

Приведенная выше оценка температуры атмосферы, по существу, относится к тропосфере; радиоизлучением ионосферы в диапазоне частот выше 1 ГГц можно пренебречь, так как поглощение в ионосфере обратно пропорционально квадрату частоты.

Яркостная температура Земли определяется ее кинетической температурой Тя3=290 К и коэффициентом отражения электромагнитной энергии от поверхности Земли

Тя.з.=Тоз(1-Ф)^2. (27)

Комплексный коэффициент отражения определяется известными формулами Френеля:

для горизонтальной поляризации

ФГ=(sin β- √ε + j 60σλ - соs 2 β )/(sіn β+ √ε + j 60σλ - соs 2 β), (28)

для вертикальной поляризации

Фв=[(є+ j 60σλ)sinβ-√ε + j 60σλ - соs 2 β)]/ [(є+ j 60σλ)sinβ+√ε + j 60σλ - соs 2 β)]

(29)

где є — диэлектрическая проницаемостьЗемли;

σ — электропроводимость Земли.

Значения є и σ для некоторых видов земной поверхности приведены в таблице 1.

Результаты расчетов по формуле (27) с учетом горизонтальной и вертикальной поляризаций (28-29) при отражении от участков земной поверхности, представленных в таблице, приведены на рисунке 8 (номера кривых на рисунке 8 соответствуют нумерации почв в таблице).

Таблица 1. Виды земной поверхности.

№ п/п

Видземной поверхности

Є, В/М

σ, Сим/м

1

Морская вода

80

1...6

2

Пресная вода

80

10-3 5*10-3

3

Влажная почва

5. ..30

10-2 10-3

4

Сухая почва

2...6

10-4 10-5


Рисунок 8-Зависимость яркостной температуры Земли от угла места антенны земной станции для вертикальной (а) и горизонтальной (б) поляризаций

Для определения Тя.3 при .круговой поляризации в первом приближении следует усреднить значения Тя.3 для горизонтальной и вертикальной поляризаций. При определении величины ТЯІЗ, входящей в формулу (25) для бортовой антенны, следует учитывать вид и характер земной поверхности, попадающей в зону видимости этой антенны. Для бортовых антенн с глобальным охватом следует принимать Тя.3 ≈60 К. Можно принять следующее,

Тя.зя.а.з ≈290 К.

т. е. отраженная от Земли компонента атмосферных шумов дополняет термодинамическое излучение Земли, и в сумме они дают излучение с яркостной температурой, близкой к 290 К.

Рассмотрим еще одну составляющую шумов антенны в формулах (24) и (25), обусловленную омическими потерями в антенне,

Т Ш.А.=То(Lм-1)/Lм

где Т0=290 К; Lм — потери в материале зеркала антенны.

Современные металлические зеркальные антенны имеют весьма низкие потери, поэтому значения ТшА весьма малы и составляют на разных частотах значения, указанные в таблице 2.

Таблица 2 значения потерь на частотах.

F,ГГц

0.3

1

3

10

30

60

ТША

0.018

0.04

0,06

0,09

0,18

0.3

Теперь определим Т∑б и Т∑З по формуле (21) с учетом входящих в нее величин, представленных формулами (24) и (25), а также рисунками 7— 8. Полученные значения Т∑б и Т∑З также будут квазипиковыми, так как они вычислены на основе квантилей распределения интенсивности осадков.

Тя.а=260*(1,02*3,78-1)/(1,02*3,78)=192,5 К;

Тя.кб=0 К; Тя.к.(β)3=4 К (из рисунка 7),

Тя.3 з=250 К; Тя.зб=90 К (из рисунка 8).

Из таблицы 2 находим:

ТшАз=0,075 К,

Т ш.А.б=0,065 К,

Тя.а-з=290-250=40 К,

Т об=0 К, с=0,4,

ТА.з=4+0,4*(250+40)+0,075=120 К, Та.б.=192,5+90+2*0,4*0+0,065=282,5 К.

Таким образом получим:

Т∑б=120+290*[(1-0,9)/0,9]+12/0,9=165,5К.

Т∑б =282,5+290*[(1-0,9)/0,9]+30/0,9=348К.

5.2 Расчет мощностей передатчиков

Подставляя полученные значения в (9) и (10), получаем мощности земного и бортового передатчиков, необходимые для обеспечения требуемого отношения сигнал-шум (12 дБ согласно рекомендации SSОG 308.2 для QPSK IDR) на конце линии связи в течение заданного процента времени (99,9%):

P пер.з=[(16π2*37,897*106)2*3,85*1,38*10-23*384*1,75*106)/((0,047)2*251 188,6*316*0,9*0,9)]*5*15,84=4 Вт,

Рпер.б=[(16π2*(40,8*106)2*2,9*1,38*10-23*165,5*36*106)/ /((0,079) 2*63* 125892*0,9*0,9)]*1,26*26,3=52 Вт .

Следует отметить, что найденные значения мощностей передатчиков обеспечит получение требуемого значения отношения сигнал/шум в канале (12 дБ в течении 99,9 % времени).

6. Расчет электромагнитной совместимости двух спутниковых систем.

Расчет электромагнитной совместимости основан на представлении, что по мере возрастания уровня мешающего излучения, увеличивается шумовая температура системы, подвергающейся помехам.

Согласно этому методу рассчитывается кажущееся увеличение эквивалентной шумовой температуры линии, обусловленное помехами, создаваемыми мешающей станции и отношение этого увеличения к эквивалентной шумовой температуры спутниковой линии, выраженной в процентах [1].

Для конкретного случая выберем земную станцию находящуюся на территории г.Алматы эта станция является мешающей станцией для рассматриваемой системы.

Мешающая система работает на тех же частотах, что и рассматриваемая система и использует геостационарный спутник российского производства «Экспресс 6А». Исходные данные: Система А —> Система В Плотность мощности:

РКМА= -52,8 дБВт/Гц Ркмв = -51,4 дБВт/Гц

РЗМА = -27,4 дБВт/Гц Рзмв = -40,4 дБВт/Гц

Координаты земной станции А: 76°13' восточной долготы

43°54' северной широты
Координаты земной станции В: 76° 13' восточной долготы

43°54' северной широты
Диаметр антенны ЗСА 9,3 м

Диаметр антенны ЗСВ 4,5 м

Коэффициент усиления антенны спутника для ЗСл, дБ 18
Коэффициент усиления антенны спутника для ЗСв, дБ 17
Шумовая температура ЗСд, К 165,5

Шумовая температура ЗСв, К 150

Координаты спутника А: 64° восточной долготы

Координаты спутникаВ: 80° восточной долготы

Дополнительные данные для расчета, по ИСЗ Экспресс-бА: Назначение: передача данных, телевидение, телефония, Интернет,

радиовещание, видеоконференцсвязъ, и др.

Орбита геостационарная;

Срок службы 7 лет;

Мощность, потребляемая ретранслятором 1450 Вт; Мощность источников питания 36ОО Вт;

Антенны- фиксированные:

1 приемная 17°х17°, глобальная;

1 приемная 5°х11°, зоновая;

1 передающая 5°х11°, зоновая;

1 передающая 15°х15°, квазиглобальная- перенацеливаемые 1 передающая 5°х11°, зоновая;

1 передающая 5°х5°, зоновая;

1 передающая 3,5°х7°, зоновая;

Транспондеры:

Параметры

С-диапазон;

Центральные частоты (передача/прием) МГц:

№5 - 5950/3625,

№6 - 6000/3675,

№7 - 6050/3725,

№8-6100/3775,

№9-6150/3825,

№10-6200/3875,

№11 -6250/3925,

№14-6300/3975,

№15-6350/4025,

№16-6400/4075,

№17-6450/4125,

Выходная мощность, Вт:

20 (9 транспондеров),

40 (2 транспондера),

75 (1 транспондер),

35 (5 транспондеров),

Поляризация сигнала круговая правого вращения и левого вращения.

ЭИИМ в центре луча, дБВт 32,0 - 48,0;

Добротность в центре луча, дБ/К1,0 (1 1 транспондеров).

В системе используют простые ретрансляторы с преобразованием частоты, приращение эквивалентной шумовой температуры линии может быть определено из выражения/1/,

ΔТл=ΔТзс↑+γ ΔТкс↓ (30)

где ΔТз - увеличение шумовой температуры приемной системы ЗС на выходе приемной антенны ЗС, (К);

ΔТб - увеличение шумовой температуры приемной системы космической станции на выходе приемной антенны космической станции, (К);

γ- коэффициент передачи спутниковой линии между выходом приемной антенны космической станции и выходом приемной антенны ЗС, его значение обычно меньше 1 и характеризует степень влияния помех, создаваемых на линии Земля - спутник. Подробнее можно записать

ΔТкс↓= (Рз.м.*Gз.м.(θt)*Gк.с(δ))/(к*Lu) , (31)

ΔТзс↑= (Рк.м.*Gк.м.(η)*Gз.c.(θt))/(к*Ld) , (32)

где Рз.м, Рк.м - максимальная плотность мощности в полосе 1 Гц, усредненная в наихудшей полосе 4 кГц для несущих ниже 15 ГГц, подводимая к антеннам мешающего спутника и мешающей земной станции соответственно;

Ок.м.( η) - усиление передающей антенны мешающего спутника в направлении ЗС, подверженной помехам;

Оз.с.( θt) - усиление приемной антенны ЗС, подверженной помехам, в направлении на мешающий спутник;

Оз.м.( θt) - усиление передающей антенны мешающей ЗС в направлении на спутник, подверженный помехам;

Ок.с(δ) - усиление приемной антенны спутника, подверженного помехам в направлении на мешающую ЗС; К - постоянная Больцмана (1,38*10-23 Вт/Гц*К);

Lu; Ld - потери на передачу в свободном пространстве на линии Земля — спутник и спутник - Земля соответственно; Өі - топоцентрический угловой разнос между спутниками. Потери (дБ) на передачу в свободном пространстве

L = 20*(Lgf+Lgd)+ 32,45 , (33)

где f— частота, МГц;

d - расстояние (км) между земной станцией и геостационарным спутником;

а = 42644* √1 - 0,2954соsψ, (34)

где соsψ = соsξ *соsβ;

ξ- широта земной станции;

β - разность по долготе между спутником и ЗС.

Соsψ=cos 43,2°*соs3° = 0,7289*0,9986 = 0,73,

Характеристики

Тип файла
Документ
Размер
4,35 Mb
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6374
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее