62975 (588878), страница 5

Файл №588878 62975 (Разработка устройства автоматического регулирования света на микроконтроллере) 5 страница62975 (588878) страница 52016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

Регистр rButtonХHoldTime может иметь четыре значения:

1) rButtonХHoldTime = 0 (кнопка не нажата);

2) 0 < rButtonХHoldTime < cButtonOnHoldSense (кнопка нажата);

3) rButtonХHoldTime = cButtonOnHoldSense (кнопка удерживается);

4) rButtonХHoldTime = 255 (кнопка остаётся в нажатом положении после удерживания).

Последнее значение сигнализирует о том, что надо дождаться отпускания кнопки. Пока этот момент не наступит, никакие действия, связанные с обработкой состояния кнопки, не выполняются.

Подпрограммы чтения и записи EEPROM работают только с первыми 256 байтами. Это упрощает адресацию, т.к. старший регистр адреса всегда равен нулю и не используется.

Если в момент обращения к EEPROM идёт обработка предыдущего запроса, то подпрограмма чтения дожидается его окончания. Подпрограмма записи в аналогичной ситуации немедленно прекращается. Это вполне допустимо, поскольку задержка записи даже в несколько десятков миллисекунд не нарушает работу основной программы, и не заметна для пользователя.

Как уже отмечалось, согласно описанию МК, гарантированное число циклов перезаписи EEPROM составляет не более 100 000. По этой причине запись в ячейку осуществляется лишь в том случае, если записываемый байт данных отличается от того, что в ней уже записан.

В основе подпрограммы генерации псевдослучайного числа RandomNumber8bit лежит алгоритм [6, раздел 9.33 "Последовательности, генерируемые регистрами сдвига с обратными связями"]. Используется программно реализованный 8-ми разрядный регистр сдвига с отводами от 7-го, 5-го, 4-го и 3-го разряда, над которыми производится логическая операция исключающее или (XOR, в МК соответствует команде EOR).

Входными данными подпрограммы является seed – число, определяющее начало псевдослучайной последовательности. Это число должно быть

отлично от нуля. В противном случае оно заменяется числом 113. Почему именно 113? Потому что это первое число от начала списка, удачно располагающееся с точки зрения возвращаемого результата, умноженного на два. Первоначально seed генерируется путём измерения сетевого напряжения в момент подключения устройства к сети, что гарантирует действительно случайный характер seed.

Для повышения скорости выполнения подпрограммы и сокращения количества кода содержимое регистра SREG не сохраняется, хотя подпрограмма изменяет состояние некоторых его флагов.

2.6 Выбор, описание и расчеты элементной базы

Устройство предназначено для управления стандартными лампами накаливания. Подключение другой нагрузки, например энергосберегающей лампы или электродвигателя, может вывести устройство и (или) нагрузку из строя.

Полный перечень использованных компонентов (спецификация) прилагается (Приложение В). Также прилагаются описания активных компонентов, задействованных в схеме (Приложение Г).

а) Диодный мост

Применение диодного моста VD2, рассчитанного на ток 6 А, для работы с небольшим током нагрузки (максимум 0,55 А) объясняется тем, что лампы иногда перегорают во время работы. Возникающий при этом импульс тока амплитудой более 10...20 А способен повредить одноамперные мосты, такие как КЦ402 или КЦ405.

Ещё одна причина большого запаса по току – это гораздо меньшая степень нагрева моста. Впрочем, полностью устранять нагрев не имеет смысла, т.к. корпус устройства всё равно немного нагревается от ламп, особенно когда они включены на максимальную яркость.

По причине, указанной в разделе Защита от превышения сетевого напряжения, диодный мост должен быть рассчитан на обратное напряжение не менее 600 В.

б) Блок питания

Источник опорного напряжения

Особенностью схемы является использование для питания МК не обычного стабилитрона, а интегрального источника опорного напряжения DA1 параллельного типа. Как уже отмечалось, это позволяет отказаться от отдельного ИОН и снизить потребляемый ток. Помимо этого, если напряжение на выходе параллельного ИОН повысится по каким-либо причинам, возникшим со стороны шины питания схемы, это не приведёт к нарушению стабилизации, а лишь увеличит ток через ИОН. Это общая особенность параллельных стабилизаторов напряжения [3].

Нерегулируемый двухвыводной ИОН выбран специально – нет необходимости подбирать и устанавливать два дополнительных высокоточных резистора. Для стабильной работы данного ИОН не требуется конденсатор с низким эквивалентным последовательным сопротивлением (ESR), что тоже является плюсом.

Выбираем ИОН серии LM4040 с классом точности 1%.

в) Балластный резистор

Для гашения избытка сетевого напряжения, поступающего на вход ИОН, используется балластное сопротивление, образованное резисторами R1 и R2. Принцип действия ИОН параллельного типа совпадает с обычным стабилитроном, поэтому для расчёта гасящего резистора можно применить классическую формулу:

R = (Uвх – Uст) / (Iн + Iст), (2.1)

где Uвх – входное (ограничиваемое) напряжение, снимаемое с выхода диодного моста;

Uст – напряжение стабилизации стабилитрона;

Iн – ток нагрузки;

Iст – ток стабилитрона.

Изменим формулу с учётом падения напряжения на двух диодах диодного моста:

R = (Uвх – 2•Uд – Uст) / (Iн + Iст). (2.2)

Падение напряжения на предохранителе не учитываем, т.к. оно составляет всего 0,2 В при максимальной нагрузке. Добавив коэффициент, учитывающий разброс сопротивления резистора, получаем конечную формулу:

R = [(Uвх – 2•Uд – Uст) / (Iн + Iст)] • Кr (2.3)

Сопротивление резистора должно быть, с одной стороны, достаточно низким, чтобы обеспечить минимальный ток стабилитрона при максимальном токе нагрузки и минимальном напряжении сети, но, с другой стороны, достаточно высоким, чтобы при максимальном напряжении сети и минимальном токе нагрузки не превысить максимально допустимый ток стабилитрона.

Начнём с выяснения максимального сопротивления резистора, обеспечивающего минимальный ток стабилитрона при наихудших условиях.

Минимальное среднее значение выпрямленного напряжения Uвх при 10%-ном допуске на напряжение сети [4] составит 198 В. Но здесь следует также учесть снижение напряжения под воздействием мощной нагрузки. В расчёте максимальной яркости лампы указано снижение на 4 В. Значит

Uвх = 198 – 4 = 194 (В).

Наибольшее падение напряжения на диодном мосту Uд будет при максимальной нагрузке. Согласно графику из описания моста, при токе нагрузки 0,55 А, когда обе лампы включены на максимальную яркость, прямое напряжение для одного диода составляет около 0,73 В.

Отклонение стабилизированного напряжения равно 1% (по описанию LM4040, класс точности D). Значит

Uст = 5 + 0,05 = 5,05 (В).

Минимальный ток, требуемый для работы стабилитрона, в соответствии с его описанием, составляет Iст = 0,1 мА.

Поскольку в схеме используются два резистора, каждый из которых имеет допуск 5%, принимаем Кr = 0,9. Старение резисторов (увеличение сопротивления со временем) не учитывается, т.к. они не будут подвергаться ни максимально допустимому напряжению, ни высокой температуре.

Потребляемый ток почти не зависит от того, включены ли каналы, в каком количестве и на какой яркости.

В силу малых величин обратные токи защитного диода, диодного моста, транзисторов, а также токи утечки конденсаторов не учитываются.

В значительной степени на ток потребления влияет нажатие кнопок. В этом случае ток протекает от плюса источника питания через внутренний (pull-up) резистор МК и замкнутую кнопку на землю. Указанное в описании МК минимальное сопротивление внутреннего резистора составляет 20 кОм. Если нажаты обе кнопки, ток составит I=2 • (5 / 20000) = 0,5 (мА).

Таким образом, суммарный максимальный ток потребления по цепи +5В (при напряжении ровно 5,0 В) равен 2,2 + 0,5 = 2,7 мА (без учёта тока стабилитрона).

Значит, в худшем случае, т.е. при напряжении 5,05 В, потребляемый ток составит Iн = 5,05 • 2,7 / 5 = 2,73 мА.

Если бы в схеме использовался однополупериодный выпрямитель, этот ток нужно было бы удвоить.

Подставим полученные данные в исходную формулу (2.3):

R = [(194 – 2•0,73 – 5,05) / (0,00273 + 0,0001)] • 0,9 =

= [187,49 / 0,00283] • 0,9 = 66251 • 0,9 = 59626 (Ом)

Таким образом, балласт должен иметь сопротивление не более 60 кОм. Его можно получить, соединив последовательно два резистора по 30 кОм (о том, почему нельзя обойтись одним резистором, рассказано далее при расчёте его мощности).

Теперь для найденного сопротивления балластного резистора рассчитаем, не выйдет ли из строя стабилитрон, если сетевое напряжение увеличится до уровня ограничения защитного диода VD1, а также при воздействии других неблагоприятных факторов. Преобразуем ранее использованную формулу к следующему виду:

Iст = [(Uвх – 2•Uд – Uст) / (R • Кr)] – Iн. (2.4)

Для расчёта принимаем следующие численные значения:

Максимальное напряжение ограничения защитного диода Uвх = 548 В.

При отсутствии нагрузки падение напряжения на одном диоде диодного моста составит Uд = 0,65 В.

Минимальное напряжение стабилизации стабилитрона Uст = 5 – 0,05 = 4,95 (В).

Так как шунт составлен из двух резисторов, R = 30000 + 30000 = =60000(Ом).

Коэффициент сопротивления Кr принимаем равным 0,95, т.к. при этом ток стабилитрона будет больше.

Минимальный ток нагрузки будет при не нажатых кнопках. При номинальном напряжении питания 5 В этот ток равен 2,2 мА. Значит при минимальном напряжении 4,95 В ток будет равен Iн = 4,95 • 2,2 / 5 = 2,18 (мА).

Iст = [(548 – 2•0,65 – 4,95) / ((30000 + 30000) • 0,95)] – 0,00218 =

= [541,75 / 57000] – 0,00218 = 7,3 (мА).

Полученное значение меньше 12 мА – величины максимального тока ИОН, рекомендованного в его описании. Мощность ИОН, рассеиваемая при таком токе, составит 5 • 0,007 = 35 (мВт). Это более чем на порядок меньше его максимальной мощности 500 мВт. Следовательно, выбранное сопротивление балластного резистора нам подходит.

Переходим к расчёту мощности балластного резистора. На первый взгляд, казалось бы, резистора 0,5 Вт будет вполне достаточно, ведь он выдерживает напряжение до 350 В. На самом деле это не так. В [5] сказано, что мощность резистора, указываемая в его описании, действительна лишь в том случае, если его сопротивление выше так называемого критического. Последнее вычисляется по формуле:

Rк = Uпасп2 / Pпасп, (2.5)

где Uпасп – паспортное рабочее напряжение резистора,

Pпасп – его паспортная мощность.

Для резистора серии С2-23 мощностью 0,5 Вт критическое сопротивление Rк = 3502 / 0,5 = 245 (кОм). Если сопротивление резистора, как в нашем случае, меньше критического расчёт мощности следует производить по формуле: P = U2 / R. Учитывая максимальное напряжение сети, минимальное падение напряжения на диодном мосту, и минимальное напряжение стабилизации, мощность резистора будет равна:

P = (Uвх – 2•Uд – Uст)2 / R (2.6)

P = (242 – 2•0,65 – 4,95)2 / 60000 = 0,93 (Вт).

Однако оказалось, что мощности резистора 1 Вт тоже недостаточно. Экспериментальная проверка показала, что даже резистор 2 Вт (отечественный, серии МЛТ-2) сопротивлением 56 кОм сильно нагревается. Согласно требованиям проекта, это недопустимо. Нагрев балластного резистора является единственной причиной нагрева корпуса устройства в ждущем режиме. Поэтому необходимо этот нагрев устранить.

Попытка использования 5 Вт импортного резистора серии SQP сопротивлением 50 кОм проблему не решила – он нагревается почти до той же температуры, что и МЛТ-2.

В результате было решено использовать два 2 Вт резистора, соединив их последовательно. Помимо снижения температуры, это повышает надёжность устройства, т.к. в случае пробоя одного из резисторов, второй предотвратит выход ИОН из строя. Чтобы обеспечить равномерный нагрев, номиналы резисторов должны быть одинаковыми.

Предпочтительны отечественные 2 Вт резисторы серии МЛТ-2. Их габариты несколько больше импортных аналогов серии С2-23, зато они меньше нагреваются.

г) Фильтрующий конденсатор

Конденсатор С1 сглаживает пульсации выпрямленного напряжения. Хотя для расчёта его ёмкости можно было воспользоваться методикой из [6, стр.52, раздел 1.27 "Фильтрация в источниках питания"], конденсатор подбирался эмпирическим путём. Это вызвано следующим обстоятельством.

Через несколько секунд после окончания регулировки яркости её значение запоминается в EEPROM. Согласно описанию МК, ток программирования составляет 6 мА (при 5 В, 25°С). Отсюда следует, что по сравнению с током потребления в обычном режиме ток при записи возрастает почти в четыре раза: (2,2 мА + 6 мА) / 2,2 мА = 3,7. Цикл записи, согласно описанию МК, длится 8,5 мс, т.е. почти целый полупериод (10 мс). При таких условиях накопленный заряд конденсатора быстро истощается, что приводит к уменьшению напряжение питания МК и образцового напряжения АЦП. Визуально это выглядит как кратковременное однократное моргание лампы через несколько секунд после окончания регулировки яркости (эффект заметен при уровне яркости выше среднего).

Код программы построен таким образом, что циклы записи в EEPROM следуют друг за другом через каждые 10 мс. Если регулировка яркости прекращается одновременно для двух каналов, запись в память будет длиться на 8,5 мс больше. За 1,5 мс (10 мс – 8,5 мс) конденсатор не успеет полностью зарядиться, соответственно, напряжение опустится ещё ниже, и моргание лампы будет ещё заметнее, особенно при пониженном напряжении сети.

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее