62232 (588748), страница 2

Файл №588748 62232 (Аналоговые перемножители и напряжения) 2 страница62232 (588748) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

где rЭ = Т/IЭ – дифференциальное сопротивление перехода база-эмиттер.

Если выполняется условие RY >> rЭ, тогда выражение (4) упрощается:

, (2.5)

а выражение (2.1) для данного перемножителя приобретает вид:

, (2.6)

где – разность входных напряжений между базами транзисторов VT7 и VT10.

Однако следует заметить, что и в этом случае линейное напряжение на входе Y будет ограничено максимальным током I0:

.

Поскольку проходная характеристика сдвоенного дифференциального каскада остается по-прежнему нелинейной, для линеаризации входа Х служит дифференциальный каскад на транзисторах VT2, VT3, VT5 и VT6. Линеаризация разности выходных токов в нем осуществляется, аналогично каналу Y, установкой резистора RX:

(2.7)

Нагрузкой дифференциального каскада являются транзисторы VT1 и VT4 в диодном включении. Токи коллекторов транзисторов VT2 и VT5, протекая через p-n переходы транзисторов VT1 и VT4, создают на них падения напряжения, разность которых является входным напряжением сдвоенного дифференциального каскада:

(2.8)

где I0 – начальный ток дифференциального каскада (предполагается, что транзисторы VT1 и VT4 абсолютно идентичны и их токи насыщения IS обратно смещенного p-n перехода одинаковы); IX – приращение тока, обусловленное приращением входного напряжения.

Подставляя (2.8) в (2.6), получим передаточную функцию перемножителя в следующем виде:

(2.9)

где масштабный коэффициент, имеющий размерность напряжения.

Схема, приведенная на рисунке 2.2, является базовой для большинства выпускаемых отечественной и зарубежной промышленностью АП. Для большинства современных интегральных микросхем АП, построенных на основе дифференциальных транзисторных пар с управляемой крутизной преобразования, погрешность перемножения лежит в пределах 0,5-2 % [4–6]. Источниками статической погрешности в АП являются рассогласование характеристик транзисторов в множительном ядре за счет технологического разброса и температурных градиентов по кристаллу, нелинейность входных преобразователей «ток-напряжение» (ПНТ) и т.д. [4]. В [6] показано, что наиболее существенный вклад в нелинейность АП вносят ПНТ, а при снижении погрешности линейности ПНТ до 0,1-0,05 % необходимо учитывать вклад в погрешность перемножения, вносимый объемными сопротивлениями баз транзисторов множительного ядра и логарифмирующих диодов [6].

2.1 Схемотехнические способы снижения погрешности перемножения

Источниками погрешности перемножения в четырехквадрантном АП (рис. 2.2) являются:

  • напряжение смещения управляемых током дифференциальных каскадов;

  • напряжения смещения ПНТ;

  • погрешность установки масштабного коэффициента;

  • влияние коэффициента усиления тока базы транзисторов;

  • влияние токосуммирующего выходного каскада (при использовании одиночного выхода АП);

  • нелинейность ПНТ;

  • влияние объемных сопротивлений баз транзисторов.

Погрешности, обусловленные первыми пятью факторами, играют существенную роль, но могут быть снижены за счет тщательного симметрирования схемы с использованием технологических возможностей интегральной технологии, а также в процессе эксплуатационной настройки интегральной схемы АП [4].

В [6] показано, что результирующая погрешность АП, обусловленная нелинейностью ПНТ в каналах X и Y может быть найдена как взвешенная сумма погрешности каждого ПНТ:

,

где X и Y – относительные изменения токов в каждом канале.

Составляющие погрешности, обусловленные нелинейностью ПНТ и объемными сопротивлениями, необходимо снижать схемотехническими приемами, что и будет в дальнейшем рассмотрено.

Упрощенная схема наиболее часто используемого ПНТ, представляющего собой дифференциальный усилитель с последовательной обратной связью по току в эмиттерной цепи, приведена на рисунке 2.3а.

а) б)

Рис. 2.3. Преобразователь «напряжение-ток» (а) и его проходная характеристика (б)

В работе [7] приводится методика оценки погрешности ПНТ такого рода, суть которой сводится к оценке отклонения реальной функции крутизны преобразования напряжения в ток (кривая 2 на рис. 2.3б) от ее линейного приближения (кривая 1 на рис. 2.3б). В этом случае для схемы рис. 2.3а) крутизну преобразования можно представить как

, (2.10)

где IX – приращение тока коллектора транзисторов дифференциальной пары; I0 – ток источников тока дифференциального каскада; rE = T/I0 – дифференциальное выходное сопротивление транзисторов VT1,2 со стороны эмиттера; X=IX/I0 – относительное изменение тока.

В этом случае отклонение от линейности

,

где SX=dIX /dUX – крутизна прямой передачи; IX – абсолютное отклонение тока от идеальной линейной функции; S0 =I0 /U0 – крутизна прямой передачи при линейном приближении, I0 – максимальный выходной ток преобразователя при подаче на вход максимального напряжения UX = U0.

Отметим, что SX(0) = S0, поэтому

. (2.11)

Подставляя (2.11) в (2.10), получаем относительную погрешность преобразования напряжения в ток:

, (2.12)

поскольку при << 1 можно положить IX/I0 UX/U0.

Отметим, что в отличие от предложенного в [4] метода определения погрешности ПНТ в выражении (2.12) отсутствует трансцендентность, что позволяет оценивать погрешность непосредственно, без построения номограмм. Также необходимо отметить, что результаты оценки погрешности предложенным методом хорошо совпадают с результатами схемотехнического моделирования.

Из выражения (2.12) следует, что приемлемых уровней погрешности (меньше 0,1 %) можно достичь только при выполнении условий: R1/2rE > 500 и X<0,75. Для АП, работающих при питающих напряжениях 15 В эти условия могут быть легко реализованы, как будет показано ниже. Для низковольтных АП (при их питании от напряжений меньше 5 В) выполнение этих условий приведет к резкому снижению масштабного коэффициента перемножителя, повышению уровня шумов и т.д.

Основная погрешность линейности преобразования рассмотренного ПНТ обусловлена существенной режимной зависимостью rE от тока эмиттера. Суть рассмотренных ниже схемотехнических приемов заключается в том, что тем или иным способом необходимо ослабить влияние изменения rE при изменении тока эмиттера.

2.1.1 Использование отрицательной обратной связи

Функциональная схема ПНТ, использующая отрицательную обратную связь (ООС) для снижения влияния rЭ, приведена на рисунке 2.4. Напряжение с выходов двух операционных усилителей (ОУ) выделяется на резисторе R. Если пренебречь базовыми токами транзисторов, то весь преобразованный ток течет в их коллекторы:

,

где КU – коэффициент усиления по напряжению ОУ.

Упрощенный вариант схемотехнической реализации функциональной схемы (рис. 2.4) приведен на рисунке 2.5, а результаты сопоставительного моделирования в сравнении со схемой ПНТ (рис. 2.3а) – на рисунке 2.6.

Методика оценки нелинейности соответствует приведенной выше: определяется крутизна преобразования, нормируется относительно максимального значения крутизны на интервале входного напряжения, определяется отклонение от идеальности (линейной функции y = kx при k = 1) и умножается на 100 %.

Рис. 2.4. Функциональная схема ПНТ с ООС

Рис. 2.5. Упрощенная принципиальная схема ПНТ с ООС

При максимальном относительном изменении тока X = 0,75 погрешность базовой схемы составляет 2,5 % при входном напряжении 1,5 В, а схемы ПНТ с ООС при тех же условиях измерения – не более 0,05 %. Как будет показано ниже, такой результат не является уникальным, и зависит от глубины обратной связи. Но глубина ООС в таких схемах может быть увеличена только за счет существенного усложнения схемы. В то же время усложнение схемы и применение транзисторов p-n-p-типа сужает частотный диапазон ПНТ.

В сущности схемы, реализующие принцип ООС в ПНТ, не отличаются большим разнообразием и, в конечном счете, сводятся к той или иной схемотехнической реализации усилителей в цепи ООС. На рисунке 2.7 приведен еще один вариант реализации ПНТ, предложенный в [8].

Погрешность крутизны преобразования такой схемы зависит как от rЭ, так и от тока базы транзисторов VT1 (VT14):

, (2.13)

где 4,6 – коэффициент усиления тока базы соответствующего транзистора.

Рис. 2.6. Результаты оценки нелинейности при сопоставительном моделировании базовой схемы ПНТ и ПНТ с ООС

Рис. 2.7. Преобразователь «напряжение-ток»

Результаты моделирования схемы ПНТ (рис. 2.7) приведены на рисунке 2.8.

Погрешность данной схемы ПНТ практически такая же, как и у предыдущей (0,031 %), однако, как будет показано ниже, такое построение схемы ПНТ предоставляет интересные возможности введения дополнительных каналов компенсации, что позволит на порядок снизить погрешность крутизны преобразования.

На основании проведенных исследований можно сделать следующие выводы в отношении применения схем ПНТ с ООС:

  • применение ООС в ПНТ позволяет в петлевое усиление раз снизить погрешность крутизны преобразования;

  • в ПНТ с ООС отсутствует необходимость точного согласования резисторов;

  • снижение погрешности преобразования сопровождается существенным усложнением схемы, увеличением токопотребления и сужением полосы пропускания.

Рис. 2.8. График нелинейности ПНТ (рис. 2.7)

2.1.2 Использование принципов компенсации нелинейности

Основная погрешность линейности преобразования рассмотренного ПНТ обусловлена существенной режимной зависимостью rE от тока эмиттера. Суть рассмотренных ниже схемотехнических приемов заключается в том, что тем или иным способом формируется компенсирующий ток, ослабляющий влияние изменения rE при изменении тока эмиттера.

На рисунке 2.9 приведена схема одного из вариантов такого ПНТ [9]. Оценку нелинейности преобразования напряжения в ток можно произвести аналогичным способом. Для этого рассмотрим следующие уравнения:

; (2.14)

, (2.15)

где – разность напряжений база-эмиттер транзисторов VT2 и VT5; IK – компенсирующий ток вспомогательного дифференциального каскада на транзисторах VT3 и VT4; КК =IK/I0 .

Суммарный выходной ток ПНТ c учетом знаков приращений можно представить как I = IX - IK, откуда из (2.14) и (2.15) следует:

. (2.16)

Поскольку (1) 1, последнее слагаемое в выражении (2.16) можно разложить в ряд. Тогда выражение (2.16) можно представить как

. (2.17)

Рис. 2.9. Упрощенная схема ПНТ с повышенной линейностью

Так как IK =IX - I, а Т/I0=rE, выражение (2.16) может быть преобразовано к виду:

. (2.18)

При выполнении условия

(2.19)

второе слагаемое в выражении (2.18) обращается в нуль, поэтому результирующая крутизна преобразования напряжения в ток не будет зависеть от уровня входного сигнала.

Так как выражение (2.18) было получено при определенных допущениях (например, коэффициент передачи тока эмиттера всех транзисторов не зависят от тока и равны единице), выполнение условия (2.19) не исключает полную независимость крутизны от уровня входного напряжения. Однако погрешность преобразования можно сделать достаточно малой, что подтверждается результатами моделирования рассмотренных схем (рис. 2.10).

Графики, приведенные на рисунке 2.10, по сути представляют собой отклонение в процентах нормированной крутизны прямой передачи от единицы, что при U0 = 1 совпадает с выражением (2.12). Для схемы ПНТ (рис. 2.3а) максимальное отклонение составляет 0,75 %, а для схемы ПНТ (рис. 2.9) не превышает 0,015 % в диапазоне изменения входного напряжения 1 В при питающем напряжении 5 В.

Следует также отметить, что для схемы ПНТ, приведенной на рисунке 2.9, достаточно точное выражение для отклонения от линейности может быть получено из выражений (2.14) и (2.15) после аппроксимации их полиномами четвертой степени. В этом случае можно дать следующие рекомендации при осуществлении параметрического синтеза. Условие (2.19) дает приближенное значение сопротивлений резисторов R1 и RK, а дальнейшую параметрическую оптимизацию можно осуществить, добиваясь, чтобы значение отклонения на краях диапазона совпадали со значение отклонения в точке UX = 0. Это будет наилучшее приближение к линейной функции.

К недостаткам схемы линейного ПНТ, приведенного на рисунке 2.9, можно отнести необходимость наличия четырех хорошо согласованных источников тока, что увеличивает мощность, потребляемую схемой. Кроме того, даже незначительные различия токов (в пределах 5 %) приводят к существенному ухудшению линейности за счет нарушения симметрии схемы.

Существенно меньшим токопотреблением отличается схема ПНТ, приведенная на рисунке 2.11а) [10]. С помощью делителей тока ДТ часть тока IX ответвляется в транзисторы VT3 и VT4 и с соответствующим знаком суммируется с выходным током ПНТ. Разность напряжений база-эмиттер транзисторов VT3 и VT4 пропорциональна логарифму тока IX . С помощью резистора RК формируется ток, пропорциональный Т, знак которого противоположен составляющей тока Т дифференциального каскада:

,

где КД – коэффициент деления тока ДТ.

При соответствующем выборе КД и сопротивлений резисторов R0 и RК условие компенсации очевидно:

.

Упрощенный вариант схемотехнической реализации приведен на рисунке 2.11б), а результаты моделирования этой схемы – на рисунке 2.12. Деление тока осуществляется с помощью повторителей тока на транзисторах VT3, VT4, VT5 и VT8, VT9, VT10 за счет соответствующего выбора площадей эмиттеров транзисторов. Нормированное отклонение крутизны практически совпадает со схемой ПНТ (рис. 2.9), в то же время ток, потребляемый схемой, показанной на рисунке 2.9, в два раза ниже.

Рис. 2.10. Графики, иллюстрирующие отклонение от линейности схем ПНТ (рис. 2.3а) () и ПНТ (рис. 2.9) (□)

Еще один вариант предлагаемых схемотехнических принципов построения линейных ПНТ приведен на рисунке 2.13. Деление тока в этой схеме происходит в самом дифференциальном каскаде, в остальном принцип действия схемы и аналитические выражения, определяющие условия компенсации, полностью совпадают с результатами анализа схемы, приведенной на рисунке 2.11б.

Условие компенсации нелинейности выглядит следующим образом:

,

а значение крутизны преобразования определяется выражением

, (2.20)

где КД = s1/s2 – коэффициент деления сигнального тока, обусловленный выбором площадей si эмиттеров транзисторов VT1, VT2 (VT4, VT3).

а) б)

Рис. 2.11. Построение линейного ПНТ с использованием делителей тока

Вариант использования делителя тока в коллекторных цепях дифференциального каскада приведен на рисунке 2.14. По своим характеристикам эта схема близка к рассмотренным ранее, однако требует двух согласованных резисторов (R6 и R7), что не всегда удобно.

К сожалению, предложенные схемы не лишены недостатка: как видно из выражения (2.20), за высокую линейность и малое токопотребление приходится «платить» снижением крутизны на 30–40 %. Если вместо делителя тока в схеме ПНТ использовать ответвитель тока (рис. 2.15), то наряду с повышением линейности крутизну преобразования можно повысить в два-три раза.

Рис. 2.12. Результаты сравнительного моделирования схем ПНТ (рис. 2.3а) () и ПНТ (рис. 2.11б) (□)

Рис. 2.13. Схема ПНТ с делителем тока на входе дифференциального каскада

Рис. 2.14. Вариант построения линейного ПНТ с делителями тока

Рис. 2.15. Схемотехническая реализация линейного ПНТ с повышенной крутизной

Для определения условий компенсации нелинейности в схеме на рисунке 2.15 необходимо решить систему трансцендентных уравнений, что можно сделать только численно. Однако принцип ее функционирования также похож на предыдущие. Ответвитель тока на транзисторах VT3, VT4, резисторе R3 и VT5, VT6, резисторе R4 имеет нелинейную характеристику, причем такую, что дифференциальный коэффициент передачи тока транзистора VT1 (VT2) имеет отрицательный знак, поэтому приращения токов транзистора VT1 и VT4 с помощью транзисторов VT7, VT8 складываются (а не вычитаются, как в предыдущих случаях). За счет этого крутизна прямой передачи ПНТ возрастает. С помощью транзисторов VT8, VT9 и резистора RК формируется компенсирующий ток, пропорциональный Т, так что выполняется условие частичной нейтрализации влияния режимно зависимых сопротивлений эмиттеров транзисторов дифференциального каскада. Ориентировочное значение компенсирующего резистора можно определить как RK R0, а более точно это сопротивление можно выбрать в результате схемотехнического моделирования, используя рекомендации, данные ранее.

Вариант реализации схемы ПНТ с повышенной крутизной приведен на рисунке 2.16. В этом случае компенсирующий ток из коллекторной цепи отбирается с помощью измерения базового тока n-p-n транзисторов с последующим его усилением с помощью p-n-p транзисторов.

Формировать компенсирующий ток можно и в эмиттерных цепях базового дифференциального каскада, как это показано на рисунке 2.17.

В этом случае часть компенсирующего тока попадает в эмиттер дифференциального каскада, а часть тока, обусловленная коэффициентом передачи делителя тока на транзисторах VT7, VT8 (VT9, VT10) (рис. 2.17), перекрестно отправляется в коллекторы транзисторов дифференциальной пары. Фактически принцип компенсации в этой схеме можно объяснить следующим образом. Приращение тока эмиттера транзистора VT1 (VT2) обусловлено не только приращением сигнального тока через резистор R0, но и равным приращением компенсирующего тока с противоположным знаком. В результате rЭ транзисторов VT1 и VT2 остаются практически постоянными, так как ток эмиттера транзисторов дифференциальной пары практически не меняется при изменении входного напряжения.

Рис. 2.16. Вариант схемотехнической реализации линейного ПНТ с повышенной крутизной

Таким образом, сущность повышения линейности ПНТ при использовании цепей компенсации можно сформулировать следующим образом.

Тем или иным способом формируется разность напряжений база-эмиттер, зависящая от сигнального тока преобразователя, формируется компенсирующий ток, отправляемый в нужной фазе на выход преобразователя.

Практически все рассмотренные схемы ПНТ, линейность которых повышена за счет введения компенсирующих токов по такому параметру, как погрешность преобразования, напряжения в ток близки друг к другу. Достоинства или недостатки того или иного схемотехнического решения определяются лишь абсолютным значением крутизны в сравнении с базовой схемой, наличием либо отсутствием p-n-p транзисторов и частотными свойствами. Поэтому проектировщик вправе выбирать схемотехническое решение в зависимости от ограничений, принятых при разработке.

Еще одна возможность компенсации иллюстрируется схемой ПНТ (рис. 2.18). Эта схема уже рассматривалась ранее, и для нее приводилось выражение, учитывающее погрешность преобразования от коэффициента усиления тока базы и конечного выходного сопротивления транзистора со стороны эмиттера (выражение (2.13)).

Рис. 2.17. Схема ПНТ с компенсацией нелинейности в источниках тока дифференциального каскада

Если схему ПНТ с ООС дополнить усилителями тока УТ1 и УТ2 с коэффициентом усиления KI, то с их помощью измеряется базовый ток и отправляется в коллектор соответствующего транзистора. Таким образом, коэффициент, эквивалентный коэффициенту передачи тока эмиттера транзисторов VT6 (VT8), можно сделать равным единице или больше единицы за счет выбора значения KI. В этом случае выражение (2.13) можно представить следующим образом:

(2.21)

Рис. 2.18. Схема ПНТ с ООС и компенсацией нелинейной зависимости коэффициента усиления тока базы

Следовательно, если KI >1, в знаменателе выражения (2.21) появляется член с отрицательным знаком, который может компенсировать достаточно малое, но конечное значение составляющей, зависящей от выходного сопротивления транзистора со стороны эмиттера.

Рис. 2.19. Схема ПНТ с ООС и компенсацией нелинейности

Рис. 2.20. Зависимость отклонения от линейности крутизны преобразования схемы ПНТ (рис. 2.18)

Физическая реализация такого усилителя тока затруднена, однако эта же идея используется в схеме ПНТ, приведенной на рисунке 2.19. Поскольку приращение тока через резистор RX обусловлено приращением тока через транзистор VT7 или VT9, то пропорциональное приращение тока возникает и в транзисторах VT15, VT16. Приращение токов коллекторов этих транзисторов практически совпадает с приращением токов баз транзисторов VT1 и VT14 с точностью до знака, таким образом реализуется принцип компенсации, показанный выражением (2.21), поскольку S = dIX/dUX.

Результаты моделирования схемы ПНТ (рис. 2.18) приведены на рисунке 2.20 и практически совпадают с результатами моделирования схемы (рис. 2.19). Погрешность преобразования ПНТ в этом случае не превышает 0,0015 % в диапазоне входных напряжений 1 В, однако следует заметить, что частотные свойства этой схемы существенно зависят от качества боковых p-n-p транзисторов и на амплитудно-частотной характеристике появляется подъем вблизи частоты среза, обусловленный вторым порядком передаточной функции цепи.

2.1.3 Мостовые преобразователи «напряжение-ток»

Как уже отмечалось, основная погрешность линейности преобразования рассматриваемых ПНТ обусловлена существенной режимной зависимостью rЭ от тока эмиттера.

На рисунке 2.21 приведена схема мостового преобразователя «напряжение-ток», в котором влияние выходного сопротивления преобразователя на точность преобразования существенно снижено. В основе такой мостовой схемы лежит «бриллиантовый транзистор» [11]. Действительно, для тока, протекающего через резистор R1, можно записать:

, (2.22)

где RВЫХ.1,2 – выходное сопротивление соответствующего «бриллиантового транзистора».

Рис. 2.21. Схема мостового преобразователя «напряжение-ток»

Выходное сопротивление «бриллиантового транзистора» можно представить следующим образом:

, (2.23)

где rЭ.N , rЭ.Р – дифференциальные сопротивления эмиттеров выходных транзисторов (VT4, VT6) типа n-p-n и p-n-p соответственно; rБ.N, rБ.P приведенные к выходу объемные сопротивления базы соответствующих транзисторов.

Если пренебречь объемными сопротивлениями базы, выражение (2.23) преобразуется к виду:

.

Это значит, что выходное сопротивление бриллиантового транзистора не зависит от тока, протекающего через резистор R1 или, что то же самое, крутизна преобразования напряжения в ток не зависит от уровня входного сигнала.

Реально объемные сопротивления базы транзисторов не равны нулю, более того – они режимно зависимы, так как в объемном сопротивлении базы присутствуют две составляющие. Первая составляющая определяет сопротивление вывода базы и сопротивление внешней области базы, которое не зависит от тока базы. Вторая составляющая характеризует сопротивление активной области базы, находящейся непосредственно под эмиттером – это сопротивление зависит от тока базы [12]. Вид этой зависимости достаточно сложен и носит полуэмпирический характер для различных транзисторов. Однако для многих случаев характер этой зависимости таков, что максимум крутизны преобразования лежит не в окрестности UX = 0, а на краях динамического диапазона и отклонение крутизны от линейности существенно меньше, чем в схеме классического преобразования тока в напряжение на основе дифференциального каскада (рис. 2.3а).

Зависимость тока через резистор R1 в этом случае можно представить как

. (2.24)

К достоинствам такого способа построения мостового преобразователя можно также отнести гораздо более широкий динамический диапазон по входному напряжению при заданной погрешности преобразования или возможность уменьшения сопротивления R1 для увеличения крутизны.

С другой стороны, мостовая схема преобразователя имеет в два раза меньшую крутизну по сравнению с базовой схемой (рис. 2.3а), так как результирующее приращение тока через резистор R1 возникает как за счет верхнего, так и за счет нижнего плеча моста, которые имеют противоположные знаки. Поэтому токи коллекторов транзисторов VT4 и VT3 имеют в два раза меньшие приращения, чем ток в резисторе R1.

Повысить крутизну преобразования можно, вводя повторители тока (F1 и F2 на рис. 2.22). Действительно, приращение тока коллектора транзистора VT6 суммируется практически с таким же приращением тока коллектора транзистора VT9, приведенного к резистору R2 через повторитель тока F2.

Результирующее значение тока, определяющее крутизну преобразования для схемы ПНТ (рис. 2.22) можно определить как разность токов, протекающую через резисторы R1 и R2:

, (2.25)

где i – коэффициент передачи тока эмиттера соответствующего транзистора; КI – коэффициент передачи повторителя тока F1 (F2). (Выражение (2.24) получено в предположении, что 6 =10 1 , 5 =9 и коэффициенты передачи повторителей тока F1 и F2 равны.)

Характеристики

Тип файла
Документ
Размер
33,2 Mb
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее