49124 (588630), страница 3
Текст из файла (страница 3)
В результате получаем многочлен:
L4 (y) = 7.99*y4-0.8176*y3 - 0.4932* y2 +0.9008*y - 0.4759
y= 0
Подставляя заданное значение функции, получаем ответ:
L4 (y) = - 0.47591
Таким образом, получаем приближенное значение корня:
X= - 0.47591
При подстановки этого аргумента в заданную функцию, получаем результат:
f (-0,47591) = 0.00625
3.4.3 Интерполяция сплайнами
Задание:
На участке [b,b+2] выбрать 3 точки (b,b+1,b+2), построить два сплайна на двух отрезках, убедиться в том, что в точке b+1 производная не терпит разрыва.
Построим таблицу:
i | 1 | 2 | 3 |
xi | 0 | 1 | 2 |
yi | 0.42279 | -0.4955 | -1.93404 |
Для построения сплайна используем формулы:
h=
Таким образом, нам необходимо, чтобы вторая производная была непрерывна, т.е. получить сплайн с дефектом 1.
Для построения глобального сплайна необходимо, начиная со второго узла поставить условие непрерывности 2-ой производной, т.е.2-ая производная при подходе к точке 2 и дальше слева (x1-0) должна равняться 2-ой производной при подходе справа (x1+0):
Приравнивая эти значения, получаем:
Для нашей функции получаем:
0.42435
- 2.10346
После того, как мы нашли m1, можем построить графики (рисунок 3.2).
S3(x1 -0)


S3(x1+0)
Рисунок 3.2 - Глобальная интерполяция сплайнами
Также можно сравнить с графиком самой функции (рисунок 3.3).
S3(x1+0)
S3(x1 -0)


F(x)
Рисунок 3.3 - Сравнение графика функции и глобальной интерполяции
3.5 Программа для использования интерполяции
На рисунках 3.4 представлена программа для использования интерполяции сплайнами. Пользователь вводит необходимые данные и при нажатии кнопки "График" строится кубический сплайн.
Листинг программы представлен в приложении В.
Рисунок 3.4 - Программа для использования интерполяции сплайнами
4. Итерационные методы решения систем линейных алгебраических уравнений
4.1 Общие сведения
К численным методам линейной алгебры относятся численные методы решения систем линейных алгебраических уравнений. Методы решения СЛАУ разбиваются на две группы. К первой группе принадлежат так называемые точные или прямые методы - алгоритм, позволяющий получить решение системы за конечное число арифметических действий. Вторую группу составляют приближенные методы, в частности итерационные методы решения СЛАУ.
4.2 Метод простой итерации
4.2.1 Описание метода
Рассмотрим СЛАУ вида
Ax = B, где А - матрица. (1)
A = {aij}i, j = 1…n
B = {bi}x = {xi}
Если эту систему удалось привести к виду x = Cx + D, то можно построить итерационную процедуру
xk = Cxk-1 + D
xk → x*, где х* - решение заданной системы.
В конечном варианте система будет имееть вид:
x1=c11x1+c12x2+c13x3+…c1nxn+d1
x2=c21x1+c22x2+c23x3+…c2nxn+d1
x3=c31x1+c32x2+c33x3+…c1nxn+d3
…………………………………………. .
xn=cn1x1+cn2x2+cn3x3+…cnnxn+dn
Условием сходимости для матрицы С выполняется, если сумма модулей коэффициентов меньше единицы по строкам или по столбцам, т.е.
, или
.
Необходимо, чтобы диагональные элементы матрицы А были ненулевыми.
Для преобразования системы можно выполнить следующие операции:
x1=a11-1 (c1-a12x2 - a13x3-… - a1nxn)
x2=a22-1 (c2-a21x2 - a23x3-… - a2nxn)
………………………. .
xn=ann-1 (cn-an1x2 - an3x3-… - an-1nxn-1)
В результате получим систему:
x1=0+ c12x2+ c13x3-…+ c1n-1xn-1+ c1nxn+d1
x2= c21x2+0 +c23x3+…+ c2n-1xn-1+ c2nxn+d2
………………………………………………………. .
xn= cn1x1+ cn2x2 +cn3x3+…+ cnn-1xn-1+ 0+dn
В ней на главной диагонали матрицы С находятся нулевые элементы, остальные элементы выражаются по формулам:
сij=-aij/aii, di=ci/aii (i,j=1,2,3…n, i<>j)
Итерационный процесс продолжается до тех пор, пока значения х1 (k), х2 (k), х3 (k) не станут близкими с заданной погрешностью к значениям х1 (k-1), х2 (k-1), х3 (k-1).
4.2.2 Решение СЛАУ методом простых итераций
Решить СЛАУ методом простых итераций с точностью .
Для удобства преобразуем систему к виду:
Условие сходимости:
,
Принимаем приближение на 0-ом шаге:
,
,
На 1-м шаге выполняем следующее:
Подставляем принятые приближения в первоначальную систему уравнений
Смотрим не выполняется ли условие остановки итерационного процесса:
:
На 2-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса
:
На 3-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса
:
На 4-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса
:
На 5-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса:
:
На 6-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса:
:
Необходимая точность достигнута на 6-й итерации. Таким образом, итерационный процесс можно прекратить.
4.2.3 Программа для решения СЛАУ методом простых итераций
На рисунке 4.1 представлена программа для решения систем алгебраических линейных уравнений методом простых итераций.
Листинг программы приведен в приложении Г.
Рисунок 4.1 - Программа "Метод простых итераций"
4.3 Метод Зейделя
4.3.1 Описание метода
В этом методе результаты, полученные на k-том шаге, используются на этом же шаге. На (k+1) - й итерации компоненты приближения вычисляются по формулам:
………………………………………….
Этот метод применим к система уравнений в виде Ax=B при условии, что диагональный элемент матрицы коэффициентов A по модулю должен быть больше, чем сумма модулей остальных элементов соответствующей строки (столбца).
Если данное условие выполнено, необходимо проследить, чтобы система была приведена к виду, удовлетворяющему решению методом простой итерации и выполнялось необходимое условие сходимости метода итераций:
, либо
4.3.2 Решение СЛАУ методом Зейделя
Решить СЛАУ методом Зейделя с точностью .
Эту систему можно записать в виде:
В этой системе сразу видно, что выполняется условие, где диагональные элементы матрицы коэффициентов по модулю больше, чем сумма модулей остальных элементов соответствующей строки.
Для удобства преобразуем систему к виду:
Условие сходимости:
,
Принимаем приближение на 0-ом шаге:
На 1-м шаге выполняем следующее:
Подставляем принятые приближения в первоначальную систему уравнений
Смотрим не выполняется ли условие остановки итерационного процесса
:
На 2-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса
:
На 3-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса:
:
На 4-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса
:
Необходимая точность достигнута на 4-й итерации. Таким образом, итерационный процесс можно прекратить.
4.3.3 Программа дл решения СЛАУ методом Зейделя
На рисунке 4.2 представлена программа для решения систем алгебраических линейных уравнений методом простых итераций.
Листинг программы приведен в приложении Г.
Рисунок 4.2 - Программа "Метод Зейделя"
4.4 Сравнительный анализ
Можно заметить, что в методе Зейделя быстрее мы достигаемой нужной точности, в нашем случае в точность была достигнута на 4-й итерации, когда в методе простых итераций она была достигнута на 6-й итерации. Но в то же время в методе Зейделя ставится больше условий. Поэтому вначале нужно произвести иногда довольно трудоемкие преобразования. В таблице 4.1 приведены результаты решения СЛАУ методом простой итерации и методом Зейделя на различных шагах итерации:
Таблица 4.1 - Результаты решения СЛАУ
№ шага | Метод постой итерации | Метод Зейделя |
0 | x1=1.34 x2=-1.75 x3=0.5 x4=0.65 | x1=1.34 x2=-1.75 x3=0.5 x4=0.65 |
1 | x1=1.277 x2=-1.56227 x3=0.3147 x4=0.5335 | x1=1.277 x2=-1.57047 x3=0.3324 x4=0.5837 |
2 | x1=1.31335 x2=-1.6127 x3=0.3647 x4=0.5884 | x1=1.32469 x2=-1.5974 x3=0.355808 x4=0.58638 |
3 | x1=1.315391 x2=-1.5935 x3=0.34936 x4=0.57867 | x1=1.318014 x2=-1.5945 x3=0.354137 x4=0.58556 |
4 | x1=1.3173416 x2=-1.5968 x3=0.35577 x4=0.58589 | x1=1.318367 x2=-1.59481 x3=0.35437 x4=0.58554 |
5 | x1=1.3179137 x2=-1.59467 x3=0.35371 x4=0.58462 | |
6 | x1=1.3181515 x2=-1.59506 x3=0.35455 x4=0.58557 |
5. Сравнительный анализ различных методов численного дифференцирования и интегрирования
5.1 Методы численного дифференцирования
5.1.1 Описание метода
Предположим, что в окрестности точки xi функция F (x) дифференцируема достаточное число раз. Исходя из определения производной:
Для оценки погрешностей формул численного дифференцирования используется формула Тейлора:
(1)
Отбрасывая последнее слагаемое, мы можем вычислить производную.