48639 (588587), страница 8

Файл №588587 48639 (Разработка программно–алгоритмических средств для определения надёжности программного обеспечения на основании моделирования работы системы типа "клиент–сервер") 8 страница48639 (588587) страница 82016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

и N – число первоначально присутствующих в ПО ошибок.

Эта модель построена на следующих допущениях:

время до следующего отказа распределено экспоненциально;

интенсивность отказов пропорционально оставшимся в ПО ошибкам.

Тогда вероятность безотказной работы ПО:

, (А.1)

где

i=CD * ( N0–(i–1) ), (А.2)

CD – коэффициент пропорциональности,

N0 – первоначальное число ошибок в ПО.

В (А.1) отчет времени начинается от момента последнего (i–1)–го отказа.

Если известны все моменты обнаружения ошибок ti и каждый раз в этот момент устраняется одна ошибка, то, используя метод максимального правдоподобия, можно получить уравнение для определения значения начального количества ошибок N0.

По методу максимального правдоподобия находим CD и N0. Функция правдоподобия имеет вид:

.

Откуда получаем условия для нахождения экстремумов:

,

Отсюда получаем решение для CD и N0:

,(А.3)

.(А.4)

Уравнение (А.4) решается методом перебора.

Пусть в ходе отладки зафиксированы интервалы времени между отказами ПО t1=10, t2=20, t3=25 ч. Определим по вышеприведенным формулам вероятность отсутствия 4–го отказа, начиная с момента устранения 3–го отказа.

Решаем (А.4) методом перебора и получаем N=4. Следовательно, из (А.3) имеем CD=0,02. Тогда из (А.1, А.2) получаем P(t4)=exp(0,02*t4) и, следовательно, 4=0,02 и среднее время до следующего отказа программы составляет =1/4=50 ч.

Это одна из первых и простых моделей. Модель использована при разработке весьма ответственных проектов (например, для программы Apollo). В ее основу положены следующие допущения:

интенсивность обнаружения ошибки R(t) пропорциональна текущему числу ошибок в программе;

все ошибки равно вероятны и их появления независимы друг от друга;

время до следующего отказа распределено экспоненциально;

ошибки постоянно исправляются без внесения новых ошибок;

R(t) = const на интервале между двумя соседними ошибками;

В соответствии с этими допущениями функцию распределения (риска) интенсивности ошибок между (i–1) и i–ой ошибками можно представить как:

R(t) = K[N0 – (i–1)],

где K – коэффициент пропорциональности; N0 – исходное число ошибок в ПО.

Все интервалы времени

ti = ti – ti–1

имеют экспоненциальное распределение:

P(ti) = exp{– K[N0 – (i–1)] ti }.

Из принципа максимального правдоподобия для K и N0 получают следующие оценки:

,(А.5)

.(А.6)

Нелинейное уравнение (А.6) достаточно сложно для решения численными методами, так как оно имеет локальные экстремумы и не всегда имеет решение.

Модель позволяет найти время до обнаружения следующей ошибки tn+1 и время необходимое для обнаружения всех ошибок T:

,

.

Можно посчитать n – количество ошибок, которое следует обнаружить и устранить для повышения наработки между обнаружениями ошибок от T1 до T2:

n = N0 · T0 · ( 1/T1 – 1/T2).(А.7)

Также можно получить затраты времени t на проведение тестирования, которые позволяют устранить n ошибок и соответственно повысить наработку от T1 до T2:

t = N0 · T0 · ln( T2 / T1 ) / K .(А.8)

Коэффициент готовности:

,

Коэффициент простоя КП = 1 – КГ, где t' – период проверок, t1 – время затрат ресурсов на проверки, tВ – длительность восстановления работоспособности программы.

Относительная длительность отладки в этой модели:

,

где H – количество систем, в которых функционирует программа; tЭ – длительность эксплуатации программы; ‑ коэффициент увеличения затрат ресурсов на единицу машинного времени.

Средняя наработка на отказ:

Тср = 1/.

Следует подчеркнуть статистический характер приведенных соотношений.

Из (А.8) видно, что время, затрачиваемое на тестирование, пропорционально квадрату первоначального количества ошибок T0 в программе. Приведем пример: пусть N0 = 1000; T0 = 1 час. Требуется повысить надежность программы с T1 =1 час до T2 = 1 месяц = 720 часов. Тогда из (А.7) n = 999, что фактически означает, что нужно обнаружить все ошибки для получения устойчивой работы ПО в 1 месяц. И на это будет затрачено время t ~ 60 дней (при расчете K по формуле (А.5) было сделано предположение о неизменности , в этом случае

K=n*T0/(сумма ар. прогрессии)).

На практике же будет затрачено гораздо меньше времени и найдено гораздо меньше ошибок, так как предположение о равномерности использования всего текста программы в процессе эксплуатации не верно. И, скорее всего, будет за меньшее время обнаружено 99% ошибок в той части программы, которая исполняется чаще, чем другая. В малоэксплуатируемой части останется не обнаруженными до 99% ошибок. Отсюда следует вывод о большой важности точного подбора входных данных при тестировании как можно более соответствующих режиму эксплуатации и вывод о необходимости сокращать время тестирования за счет меньшего тестирования малоиспользуемых ветвей программы. При этом важно не забывать о различных режимах эксплуатации ПО: нормальном, аварийном, ждущем и т.п.

Постулат, что программа не меняется за исключением исправления ошибки, а новые ошибки не вносятся, является спорным. Желание выразить надежность ПО некоторой функцией времени вполне логично, однако в действительности она от времени не зависит. Надежность ПО является функцией числа ошибок, их серьезности и расположения, а также того, насколько интенсивно система используется (интенсивность входного потока данных).

Статистическая модель Миллса

Описана в [11] и [20]. Программа специально "засоряется" некоторым количеством заранее известных ошибок. Эти ошибки вносятся в программу случайным образом, а затем делается предположение, что для ее собственных и искусственно внесенных ошибок вероятность обнаружения при последующем тестировании одинакова и зависит только от их количества. Тестируя программу в течении некоторого времени и отсортировывая собственные и внесенные ошибки можно оценить N – первоначальное число ошибок в программе.

Пусть: S – число специально внесенных ошибок; n – число найденных собственных ошибок в программе; – число найденных внесенных ошибок; n+ – количество обнаруженных ошибок при тестировании.

Тогда по методу максимального правдоподобия имеем: N = S · n / .

Основное допущение модели – распределение «посеянных» ошибок совпадает с распределением по программе собственных ошибок, и, следовательно, обнаружение, как тех, так и других ошибок равновероятно – что является существенным недостатком этой модели.

При этом можно выдвигать и проверять гипотезы об N. Пусть в программе не более k собственных ошибок и внесли нее еще S ошибок. Теперь программа тестируется, пока не будут обнаружены все специально внесенные ошибки. Причем в этот момент подсчитывается число обнаруженных собственных ошибок (обозначим его, как и раньше, как n). Введем уровень значимости C:

(А.9)

С – мера доверия к модели, то есть мера правильности нашего предположения о количестве k собственных ошибок и дает оценку для количества ошибок

,

которое нужно внести в программу, чтобы проверить гипотезу с заданным уровнем значимости.

Например, если мы утверждаем, что в программе нет ошибок (k = 0), и внося в программу 4 ошибки, все их обнаруживаем, не встретив ни одной собственной ошибки, то C = 0.80. А чтобы достичь уровня 95 %, надо было бы внести в программу 19 ошибок.

Этот метод не очень эффективен в случае применения его в реальной практике, так как если предположить что в программе своих ошибок n = 1000 (что более реально, чем n = 0), то для достижения уровня правдоподобия 0,95 в программу придется ввести 19019 ошибок, что само по себе уже тяжелая задача.

Формулу (А.9) можно модифицировать так, чтобы устранить недостаток, заключающийся в том, что C нельзя предсказать до тех пор, пока не будут обнаружены все искусственно внесенные ошибки (а это может и не произойти за ограниченное время, отведенное на тестирование). Модифицированной формулой можно пользоваться уже после того, как найдено j внесенных ошибок:

(А.10)

Это математически очень простая и интуитивно понятная модель. Процесс внесения ошибок – само слабое звено модели, так как должны вноситься "типичные" для данной программы ошибки (то есть искусственно внесенные ошибки должны иметь то же распределение вероятности, что и собственные ошибки). Кроме того, эта модель не учитывает системных ошибок, то есть ошибок вносимых на этапе проектирования, а не самого кодирования.

Модель Бейзина

Пусть ПО содержит Nk команд [20]. Случайным образом из них выбирается n команд, в которые вводятся ошибки. Затем для тестирования случайным образом выбирается r команд. Если в ходе тестирования будет обнаружено собственных и m привнесенных («посеянных») ошибок, то полное число N0 ошибок содержащихся в программе перед началом тестирования (следует из метода максимального правдоподобия) можно определить как:

.

Простая экспоненциальная модель

В отличие от модели Джелинского–Моранды R(t) const [20].

Пусть N(t) – число обнаруженных к моменту времени t ошибок и пусть функция риска пропорциональна числу оставшихся к моменту t в программе ошибок: R(t) = K(N(0) – N(t)).

Продифференцируем обе части этого уравнения по времени:

.

Учитывая, что dN(t)/dt есть R(t) (число ошибок, обнаруженных в единицу времени), получим дифференциальное уравнение:

с начальными условиями N(0) = 0, R(0) = KN0.

Решением этого уравнения является функция:

R(t) = KN0exp(–Kt).(А.11)

Для K и N0 получают следующие оценки (с применением МНК) для первых n ошибок:

,

,

где

.

Используя (А.11) можно определить время необходимое для снижения интенсивности появления ошибок с R1(t) до R2(t):

.

Дискретная модель Шика–Уолвертона

Эта модель рассмотрена в работах [12, 20, 21]. Применяется при следующих допущениях:

предполагается, что частота проявления ошибок (интенсивность отказов) линейно зависит от времени испытаний ti между моментами обнаружения последовательных i–й и (i–1)–й ошибок;

появление ошибок равновероятно и независимо;

ошибки корректируются без введения новых.

Тогда:

,

где k – коэффициент пропорциональности, обеспечивающий равенство единице площади под кривой вероятности обнаружения ошибок.

В этом случае для оценки вероятности безотказной работы получается выражение, соответствующее распределению Релея:

,

где P(ti) = P(Tti).

Отсюда плотность распределения времени наработки на отказ:

.

Использовав функцию максимального правдоподобия, получим оценку для N0 и K:

, .

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6374
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее