48639 (588587), страница 6

Файл №588587 48639 (Разработка программно–алгоритмических средств для определения надёжности программного обеспечения на основании моделирования работы системы типа "клиент–сервер") 6 страница48639 (588587) страница 62016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

В результате разыгрывается M итераций согласно п. , и получаем одну реализацию случайных функций , , и (согласно 3а) на временном интервале M*t.

Испытания проводим еще R раз и таким образом получаем R реализаций случайных функций , , и . Для каждого момента времени tj (для j = 1, … M) с шагом t находим статистическое среднее для этих функций и получаем средние функции , , и .

Также в процессе розыгрыша производится:

Расчет текущего времени наработки до отказа;

Расчет среднего времени наработки до отказа за все время розыгрыша;

Расчет вероятности отказа ПО в единицу времени как P = (* х ( + 1)**;

Расчет коэффициента готовности: Кг = 1 – /

Программа предупреждает, если задается интенсивность такая, что на интервал времени t приходится больше одного события (т.е t* должно быть меньше единицы) – для соблюдения условия ординарности потока событий.

3.3 Практические результаты моделирования

3.3.1 Оценка времени, необходимого для уменьшения количества ошибок до расчетного уровня.

Найдем время необходимое для уменьшения количества ошибок в 2 раза. Пусть (рис.17):

K (кол-во программ-клиентов) = 10;

P (кол-во программистов) = 3;

(ширина запроса клиента) = 0,0001;

N0 (начальное количество ошибок) = 100;

s (сложность сервера) = 2;

t (шаг итерации) = 0,001 (сутки);

обр (интенсивность потока обращений клиента к серверу) = 100/сутки;

испр (интенсивность потока исправления ошибки) = 0,2/сутки;

pвнес (вероятность внесения ошибки при исправлении) = 0,005

M (количество итераций) = 200000;

Общее время розыгрыша: 200 (сутки);

К (число розыгрышей) =5.

По формуле (27) получаем: дня, что является очень оптимистичной оценкой. Для этой модели надежности Джелински, Моранда, Шумана получаем лет, что явно сильно завышено. Программное моделирование дает результат T1/2 = 135 суток (рис.18).

Рисунок 17 – Форма для ввода начальных параметров розыгрыша

Рисунок 18 – Форма с результатами моделирования

3.3.2 Влияние количества клиентов на надежность ПО

Изучим влияние количества программ–клиентов на поведение ПО.

Сначала проведем моделирование при следующих условиях:

K (кол-во программ-клиентов) = 10;

P (кол-во программистов) = 3;

(ширина запроса клиента) = 0,00001;

N0 (начальное количество ошибок) = 250;

s (сложность сервера) = 2;

t (шаг итерации) = 0,002 (сутки);

обр (интенсивность потока обращений клиента к серверу) = 500/сутки;

испр (интенсивность потока исправления ошибки) = 1/сутки;

pвнес (вероятность внесения ошибки при исправлении) = 0,1/сутки

M (количество итераций) = 50000;

Общее время розыгрыша: 100 (сутки);

К (число розыгрышей) =50

Получены следующие результаты (рис.19):

Рисунок 19 – Влияние количества клиентов на надежность ПО (10 клиентов)

Из рисунка видно, что ПО начнет устойчиво работать (т.е. количество работающих клиентов сравняется с количеством неработающих клиентов) на 15 сутки, что хорошо согласуется с расчетной моделью. Теперь увеличим количество клиентов с 10 до 100:

K (кол-во программ-клиентов) = 100;

P (кол-во программистов) = 3;

(ширина запроса клиента) = 0,00001;

N0 (начальное количество ошибок) = 250;

s (сложность сервера) = 2;

t (шаг итерации) = 0,002 (сутки);

обр (интенсивность потока обращений клиента к серверу) = 500/сутки;

испр (интенсивность потока исправления ошибки) = 1/сутки;

pвнес (вероятность внесения ошибки при исправлении) = 0,1/сутки

M (количество итераций) = 85000;

Общее время розыгрыша: 170 (сутки);

К (число розыгрышей) =50

Видно, что на 170 сутки почти все ошибки исправлены (рис.20). Это происходит из–за того, что клиентов больше и их запросы охватывают большую область данных и, следовательно, обнаруживается большее количество ошибок и большее количество ошибок исправляется.

При десяти клиентах (рис.19) в ПО на 170 сутки еще будет оставаться около 50 ошибок.

Рисунок 20 – Влияние количества клиентов на надежность ПО (100 клиентов)

3.3.3 Влияние количества программистов на надежность ПО

Теперь покажем, что при малой нагрузке на сервер (малом количестве клиентских программ) увеличение количества программистов, исправляющих ошибки, дает малый эффект. Количество неисправленных ошибок к концу тестирования остается таким же. Уменьшается только время ожидания программы исправления в очереди.

Начальные условия розыгрыша:

K (кол-во программ-клиентов) = 10;

P (кол-во программистов) = 12;

(ширина запроса клиента) = 0,00001;

N0 (начальное количество ошибок) = 250;

s (сложность сервера) = 2;

t (шаг итерации) = 0,002 (сутки);

обр (интенсивность потока обращений клиента к серверу) = 500/сутки;

испр (интенсивность потока исправления ошибки) = 1/сутки;

pвнес (вероятность внесения ошибки при исправлении) = 0,1/сутки

M (количество итераций) = 50000;

Общее время розыгрыша: 100 (сутки);

К (число розыгрышей) =50

Рисунок 21 – Влияние количества программистов на надежность ПО

Видно (рис.21), что программа начнет устойчиво работать, как и раньше, только на 10–15 сутки, то есть увеличение количества программистов не приводит к ожидаемому эффекту, и часть программистов, скорее всего, будет простаивать.

Гораздо эффективнее в этой ситуации увеличивать нагрузку при тестировании. Например, увеличивая количество клиентов.

Увеличение количества программистов может оказать даже отрицательное влияние на надежность ПО, если при устранении ошибок в ПО они интенсивно вносят в него новые ошибки. Пусть при 12 программистах каждый из них вносит ошибку с интенсивностью 0,6 вместо 0,1 ошибок в сутки.

Начальные условия розыгрыша:

K (кол-во программ-клиентов) = 10;

P (кол-во программистов) = 12;

(ширина запроса клиента) = 0,00001;

N0 (начальное количество ошибок) = 250;

s (сложность сервера) = 2;

t (шаг итерации) = 0,002 (сутки);

обр (интенсивность потока обращений клиента к серверу) = 500/сутки;

испр (интенсивность потока исправления ошибки) = 1/сутки;

pвнес (вероятность внесения ошибки при исправлении) = 0,6/сутки

M (количество итераций) = 50000;

Общее время розыгрыша: 100 (сутки);

К (число розыгрышей) =50

Рисунок 22 – Влияние количества программистов на надежность ПО

Из рис.22 видно, что за 100 дней работы системы количество ошибок практически не уменьшилось.

3.3.4 Влияние интенсивности обращений клиентов к серверу

Увеличение интенсивности обращения каждого клиента к серверу не дает ожидаемого эффекта, т.к. каждый клиент обычно работает в своей узкой части ОД и выбивает ошибки из этой части, при этом значительная ОД остается не проверенной, а значит с ошибками. Проведем розыгрыш при увеличении интенсивности обращений с 500 до 2500 в сутки (рис.23).

Начальные условия розыгрыша:

K (кол-во программ-клиентов) = 10;

P (кол-во программистов) = 3;

(ширина запроса клиента) = 0,00001;

N0 (начальное количество ошибок) = 250;

s (сложность сервера) = 2;

t (шаг итерации) = 0,0004 (сутки);

обр (интенсивность потока обращений клиента к серверу) = 2500/сутки;

испр (интенсивность потока исправления ошибки) = 1/сутки;

pвнес (вероятность внесения ошибки при исправлении) = 0,1/сутки

M (количество итераций) = 250000;

Общее время розыгрыша: 100 (сутки);

К (число розыгрышей) =10

3.3.5 Определение начального количества ошибок в ПО

Данная модель в сочетание с предложенной марковской моделью надежности ПО позволяет оценить количество ошибок в программе следующим образом – получить расчетный результат, а затем подобрать начальное количество ошибок в ПО таким образом, чтобы результаты розыгрыша совпадали с результатом расчета.

Рисунок 23 – Влияние интенсивности обращений клиентов к серверу

Для решения этой задачи с помощью программы моделирования необходимо добиться того, чтобы начальная интенсивность потока ошибок 0 из модели надежности ПО типа клиент–сервер совпадала с начальной интенсивностью потока ошибок в программе моделирования. Напрямую это сделать невозможно, так как в программе моделирования такого параметра нет. Для этого в программе моделирования нужно положить = 0.5, то есть каждое обращение клиента к серверу и ответ сервера к клиенту должен с вероятностью 1 порождать ошибку. Затем необходимо добиться того, чтобы количество обращений за сутки клиентов к серверу (т.е. K*обр) было равно 0. Остальные начальные параметры программы моделирования необходимо положить равными аналогичным параметрам модели надежности.

Найдем начальное количество ошибок для примера рассмотренного ранее. Для того чтобы начальная интенсивность потока ошибок в программе моделирования была равна 0=10, положим = 0.5, а обр при 3–х программистах положим равной 3,3. Итак:

Начальные условия розыгрыша:

K (кол-во программ-клиентов) = 10;

P (кол-во программистов) = 3;

(ширина запроса клиента) = 0,5;

N0 (начальное количество ошибок) = 9;

s (сложность сервера) = 3;

t (шаг итерации) = 0,0001 (сутки);

обр (интенсивность потока обращений клиента к серверу) = 3,3/сутки;

испр (интенсивность потока исправления ошибки) = 0,5/сутки;

pвнес (вероятность внесения ошибки при исправлении) = 0/сутки

M (количество итераций) = 100000;

Общее время розыгрыша: 10 (сутки);

К (число розыгрышей) =50

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6305
Авторов
на СтудИзбе
313
Средний доход
с одного платного файла
Обучение Подробнее