48551 (588565), страница 4

Файл №588565 48551 (Разработка виртуальной лабораторной работы на базе виртуальной асинхронной машины в среде MATLAB) 4 страница48551 (588565) страница 42016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)



Обобщённая асинхронная машина содержит трёхфазную обмотку на роторе и статоре. Обмотки подключены к симметричным источникам напряжения. Математическое описание такой машины базируется на известных законах.

Уравнения равновесия ЭДС на обмотках статора и ротора базируется на втором законе Кирхгофа.

Для статора: Для ротора:

(3.1)



В уравнениях (3.1) фигурируют мгновенные напряжения, токи и потокосцепления статора и ротора, а также активные сопротивления обмоток. Обычно обмотки выполняются симметричными, к поэтому RА=RВ=RС=Rs - активное сопротивление статорной обмотки, Rа=Rb=Rс=RR - активное сопротивление роторной обмотки.

Вторым используемым законом является закон Ампера, который связывает потокосцепления обмоток с токами, протекающими по обмоткам:

Для статора:

(3.2 а)

Для ротора:

(3.2 б)

Удивительно симметричные уравнения для определения потокосцеплений показывают, что потокосцепление каждой обмотки зависит от токов во всех обмотках; эти зависимости проявляются через взаимоиндукцию. В уравнениях (3.2) LАА, LBB, LCC, Laa, Lbb, Lcc, являются собственными индуктивностями соответствующих обмоток, все остальные - взаимоиндуктивностями между соответствующими обмотками.

Третьим законом, лежащим в основе анализа, является второй закон Ньютона - закон равновесия моментов на валу машины:

(3.3)

где J (кгм2) - момент инерции на валу машины, учитывающий инерционность как самой машины, так и приведенной к валу инерционности рабочего механизма и редуктора, - угловая скорость вала машины, (Нм) - момент рабочего механизма, приведенный к валу, в общем случае он может быть функцией скорости и угла поворота, .

Наконец, четвертым и последним законом, лежащим в основа анализа машины, является закон, сформулированный Ленцем, как правило левой руки. Этот закон связывает векторные величины момента, потокосцепления и тока:

.(3.4)

Следует сразу подчеркнуть, что, несмотря на полное и строгое математическое описание, использование уравнений (3.1) - (3.4) для исследования машины встречает серьезные трудности. Из них основные:

- в уравнениях (3.3 и 3.4) фигурируют векторные величины, а в уравнениях (3.1 и 3.2) скалярные;

- количество взаимосвязанных уравнений равно 16, а количество коэффициентов - 44;

- коэффициенты взаимоиндукции между обмотками статора и ротора в уравнениях (3.2) являются функцией угла поворота ротора относительно статора, то есть уравнения (3.2) являются уравнениями с переменными коэффициентами;

- уравнение (3.4) является нелинейным, так как в нем перемножаются переменные.

3.2 Метод пространственного вектора

На пути упрощения математического описания асинхронной машины, да и вообще всех машин переменного тока, удивительно удачным и изящным оказался метод пространственного вектора, который позволил существенно упростить и сократить вышеприведенную систему уравнений; метод позволяет связать уравнения (3.1-3.4) в единую систему с векторными переменными состояния. Суть метода состоит в том, что мгновенные значения симметричных трехфазных переменных состояния (напряжения, токи, потокосцепления) можно математически преобразовать так, чтобы они были представлены одним пространственным вектором. Это математическое преобразование имеет вид (например, для тока статора):

(3.5)

где - векторы, учитывающие пространственное смещение обмоток, - симметричная трехфазная система токов статора.

Подставив в уравнения (3.5) значение мгновенных токов, найдем математическое описание пространственного вектора статорного тока:

(3.6)

На рис. 3.1 представлена геометрическая интерпретация пространственного вектора тока - это вектор на комплексной плоскости с модулем (длиной) Im, вращающийся с угловой скоростью в положительном направлении. Проекции вектора на фазные оси А, В, С определяют мгновенные токи в фазах. Аналогично пространственными векторами можно представить все напряжения, токи и потокосцепления, входящие в уравнения (3.1), (3.2).

Теперь можно переходить к упрощению уравнений.

Рисунок 3.1 - Пространственный вектор тока

Шаг первый. Для преобразования уравнений (3.1) в мгновенных значениях к уравнениям в пространственных векторах умножим их на выражения: первые уравнения на , вторые – на , третьи – на , - и сложим раздельно для статора и ротора. Тогда получим:

(3.7)

где LS, LR - собственные индуктивности статора и ротора, Lm() -взаимная индуктивность между статором и ротором. Таки образом, вместо двенадцати уравнений (3.1)-(3.2) получено лишь четыре уравнения (3.7).

Шаг второй. Переменные коэффициенты взаимной индукции уравнениях для потокосцеплений (3.7) являются результатом того, что уравнения равновесия ЭДС для статора записаны в неподвижно системе координат, связанной со статором, а уравнения равновесия ЭДС для ротора записаны во вращающейся системе координат, связанной с ротором. Метод пространственного вектора позволяет записать эти уравнения в единой системе координат, вращающейся произвольной скоростью к. В этом случае уравнения (3.7) преобразуются к виду:

(3.8)

где = р•m, р - число пар полюсов в машине.

В уравнениях (3.8) все коэффициенты являются величинами постоянными, имеют четкий физический смысл и могут быть определены по паспортным данным двигателя, либо экспериментально.

Шаг третий. Этот шаг связан с определением момента. Момент в уравнении (3.4) является векторным произведением любой пары векторов. Из уравнения (3.8) следует, что таких пар может быть шесть . Часто в рассмотрение вводится потокосцепление взаимной индукции . В этом случае появляется ещё четыре возможности представления электромагнитного момента машины через следующие пары: . После выбора той или иной пары уравнение момента приобретает определенность, а количество уравнений в системе (3.8) сокращается до двух. Кроме того, в уравнениях (3.3) и (3.4) векторные величины момента и скорости могут быть заменены их модульными значениями. Это является следствием того, что пространственные векторы токов и потокосцеплений расположены и плоскости, перпендикулярной оси вращения, а векторы момента и угловой скорости совпадают с осью. В качестве примера запись уравнений момента через некоторые пары переменных состояния машины имеет вид:

(3.9)

В конечном виде уравнения обобщённой асинхронной машины имеют вид:

(3.10)

3.3 Математическая модель асинхронной машины в осях, вращающихся с произвольной скоростью

Уравнения асинхронной машины с короткозамкнутым ротором или машины с фазной обмоткой, если к ней не подключено питающее напряжение, можно получить из уравнений (3.10), если в этих уравнениях положить .

(3.11)

Для динамических систем необходимо учитывать переходные электромагнитные процессы в машине. В этом случае в качестве пары переменных, описывающих машину, оставим пространственные векторы тока статора и потокосцепления ротора ( ), тогда уравнения (3.11) с учётом уравнений для потокосцеплений (3.8) после соответствующих преобразований примут вид:

(3.12)

где - коэффициенты.

3.4 Математическая модель асинхронной машины в неподвижной системе координат

Для того чтобы лучше понять физические процессы, происходящие в асинхронной машине, исследуем машину в неподвижной системе координат.

В неподвижной комплексной системе координат ( ) вещественная ось обозначается через , а мнимая через . Пространственные векторы в этом случае раскладываются по осям:

. Подставив эти значения в уравнения (3.12) и приравняв отдельно вещественные и мнимые части, получим:

(3.13)

4. РАЗРАБОТКА МОДЕЛИ АСИНХРОННОГО ДВИГАТЕЛЯ (АД) В ПРОГРАММЕ MATLAB

4.1 Пакет визуального программирования Simulink

Одной из наиболее привлекательных особенностей системы MATLAB является наличие в ней наглядного и эффективного средства составления программных моделей - пакета визуального программирования Simulink.

Пакет Simulink позволяет осуществлять исследование (моделирование во времени) поведения динамических линейных и нелинейных систем, причем составление «программы» и ввод характеристик систем можно производить в диалоговом режиме, путем сборки на экране схемы соединений элементарных (стандартных или пользовательских) звеньев. В результате такой сборки получается модель системы (называемая S-моделью), которая сохраняется в файле с расширением *.mdl. Такой процесс составления вычислительных программ принято называть визуальным программированием.

S-модель может иметь иерархическую структуру, то есть состоять из моделей более низкого уровня, причем количество уровней иерархии практически не ограничено. В процессе моделирования есть возможность наблюдать за процессами, которые происходят в системе. Для этого используются специальные блоки («обзорные окна»), входящие в состав библиотеки Simulink. Библиотека может быть пополнена пользователем за счет разработки собственных блоков.

Создание моделей в пакете Simulink основывается на использовании технологии Drag-and-Drop (шаг за шагом). В качестве «кирпичиков» при построении S-модели применяются визуальные блоки (модули), которые сохраняются в библиотеках Simulink.

Библиотека блоков Simulink (рисунок 4.1) – это набор визуальных объектов, при использовании которых, соединяя отдельные блоки между собой линиями связей, можно составлять функциональную блок-схему любого устройства.

Рисунок 4.1 - Окно Simulink Library Browser

Сборка блок-схемы S-модели заключается в том, что графические изображения выбранных блоков с помощью мыши перетягиваются из окна раздела библиотеки в окно блок-схемы, а затем выходы одних блоков в окне блок-схемы соединяются со входами других блоков (также с помощью мыши). Соединение блоков выполняется следующим образом: указатель мыши подводят к определенному выходу нужного блока (при этом указатель должен приобрести форму крестика), нажимают левую кнопку и, не отпуская ее, перемещают указатель к нужному входу другого блока, а потом отпускают кнопку. Если соединение осуществлено верно, на входе последнего блока появится изображение черной стрелки.

Сборка модели осуществляется в рабочем поле специального окна (рисунок 4.2). Это окно имеет строку меню, панель инструментов и рабочее поле. Меню File (Файл) содержит команды, предназначенные для работы с МDL - файлами; меню Edit (Правка) - команды редактирования блок-схемы; меню View (Вид) команды изменения внешнего вида окна; меню Simulation (Моделирование) - команды управления процессом моделирования; меню Format (Формат) - команды редактирования формата (то есть команды, позволяющие изменить внешний вид отдельных блоков и блок-схемы в целом). Меню Tools (Инструменты) включает некоторые дополнительные сервисные средства, предназначенные для работы с S-моделью.

Рисунок 4.2 - Окно, в котором осуществляется сборка модели

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее