125916 (585539), страница 12
Текст из файла (страница 12)
(3.4)
В нашем случае примем:
3.5.5 Подготовка, комплектование и оптимизация режимов работы агрегата в загоне с использованием ЭВМ
Во время первого прохода определяют правильность регулировки культиватора. Проехав 20...30 м от края поля, замеряют фактическую ширину защитных зон и глубину хода рабочих органов. При повреждении культурных растений защитную зону увеличивают. При отклонении средней замеренной глубины от заданной, культиватор дополнительно регулируют.
Во время работы агрегата рычаг распределителя гидросистемы трактора устанавливают в "Плавающее" положение.
В конце гона рабочие органы выглубляют, а после разворота агрегата для работы в обратном направлении заглубляют на ходу.
Повороты совершают на пониженных оборотах двигателя. Следует быть внимательным при работе на склонах. Когда растения малы и есть опасность присыпать их почвой, скорость без применения защитных щитков должна быть заниженной. С установкой защитных щитков и на последующей обработке скорость можно увеличивать до нормативной. Для точного вождения культиваторного агрегата при междурядной обработке и особенно на повышенных скоростях применяют следоуказатель, который устанавливают на раму трактора с правой стоРоны. При комплектовании агрегата решают в основном следующие задачи [19]:
выбор марки трактора;
выбор ширины агрегата и количества с/х машин в нем;
выбор скорости движения (рабочей передачи).
При этом имеют целью достичь наибольшей производительности и наилучшего использования мощности трактора при минимальных затратах топлива. Данная задача носит характер определения оптимальных значений параметров и режимов работы агрегатов. Нами выполнено решение данной задачи на ЭВМ по разработанной на кафедре СХМ БГСХА программе.
Программа расчетов построена исходя из следующих теоретических предпосылок.
Использование вычислительной техники в сельском хозяйстве позволит гораздо эффективнее решать многие его задачи.
Как показывает опыт развитых стран, компьютеры широко применяются инженерно-технической службой и в области эксплуатации машинно-тракторных агрегатов.
В условиях, когда для выполнения одних и тех же операций хозяйствам предлагается определенный ассортимент тракторов и с/х машин, выбор конкретного агрегата должен осуществляться по экономическому критерию (3.5)
qr ® min (3.5)
т.е. удельный расход средств на 1 у. э. га (га) должен быть минимальным.
Если учесть, что
qr = (3.6)
где Qт.э.- годовые затраты на техническую эксплуатацию агрегата, руб.;
Qп.э. – годовые затраты на производственную эксплуатацию агрегата, руб.;
wr – годовая наработка агрегатов в у.э. га (физических единицах),
то при одном и том же коэффициенте использования в работе для однотипных агрегатов qr тем меньше, чем больше сменная производительность и ниже затраты на техническую и производственную эксплуатацию агрегатов.
По данным [16]
wсм = 0,1 Вк vт Тсм xв xv t, (3.7)
где xв xv t - коэффициент использования конструктивной ширины захвата, теоретической скорости движения, времени смены.
t = Тр / Тсм (3.8)
Причем
Тсм = Тр + Тx + Ттехн + Тўтехн + Тто + Тпз + Тпр (3.9)
где Тр – время основной (чистой) работы, ч;
Тх – время на холостые ходы на поворотах и переезд с загона в загон, ч;
Ттехн – время технологического обслуживания агрегатов, ч;
Тўтехн – время на проведение внециклового обслуживания агрегатов (устранение технологических отказов), ч;
Тто – время на техническое обслуживание, ч;
Тпз – время на подготовительно-заключительные операции (приемка-сдача агрегата, подготовка к работе, переезд к месту работы, регламентируемый отдых), ч;
Тпр – время простоев по неисправностям, организационным причинам, метеоусловиям, ч;
Если принять, что для однотипных агрегатов в одних и тех же условиях работы (Ттехн, Тто, Тпр) = const, то изменяемая часть коэффициента использования времени смены
tизм = , (3.10)
тогда изменяемая часть сменной производительности
wизм. опт. = 0,1 Вк vт (Тр + Тх + Ттехн + Тпз) Ч xв xv tизм
Производительность агрегата зависит от длины гона и конструкторских параметров. Однако судить об этом по величине коэффициентов рабочих ходов и коэффициент использования циклового времени нельзя, поскольку в некоторых случаях агрегат с большим коэффициентом рабочих ходов может иметь меньшую производительность [19].
При определении Вр оптимальной по потенциальной тяговой характеристике не учитывается длина гона. Это справедливо будет только при длине гона, стремящемуся к бесконечности. На время поворота будут влиять Вр и vпов. Если взять Вр мах, то vр будет min, длина поворота снизится. Но возрастание Вр увеличивает длину поворота.
На величину Вр опт будет оказывать влияние время внутрисменных переездов tпер. Чем больше w, тем больше для tпер в балансе времени смены.
Коэффициент использования этапов времени эксплуатации агрегата, влияющих на оптимизацию Вр, определяется по формуле:
tв = (3.11)
Тпов = , (3.12)
где tдв = (3.13)
Если принять, что vр = vпов, то [19]
tдв = (3.14)
При вспашке петлевым способом с чередованием загонов для выравнивания стыковых проходов требуется дополнительный проход, при этом происходит приращение длины холостого хода
(3.15)
для безпетлевого комбинированного
(3.16)
С учетом этого для пахотных агрегатов [19].
lпов = 0,5с + 1,14R0 + 2l + Bp + +
, (3.17)
где с – оптимальная ширина загона, м;
l – длина выезда агрегата, м.
с = (3.18)
При петлевом грушевидном повороте
6 R0 + 2 l Ј lпов Ј 8 R0 + 2 l, [19] (3.19)
где l – длина выезда агрегата, м;
R0 – минимальный радиус поворота агрегата, м.
В расчете принято
lпов = 7R0 + 2 l (3.20)
Вторым фактором, влияющим на величину коэффициента рабочих ходов, является условный радиус поворота. Он обычно связан с Вр для пахотных агрегатов
R0 = (3,4…7)Вр (3.21)
Третий фактор, влияющий на длину поворота – это длина выезда агрегата, l.
Для прицепных машин
l = (0,5,,,0,75)la, [19] (3.21)
где la – кинематическая ширина агрегата, м.
Время на внутрисменные переезды определяется по формуле
Тпер = , (3.23)
где lпер – расстояние переездов, м;
vпер – средняя скорость переездов, м/с;
Fср – средняя площадь поля в хозяйстве, га.
Можно также установить связь между площадью обрабатываемого участка, длиной гона и расстоянием переезда:
lпер = 0,492 + 1,2 lpЧ10-3 – 2,98 l2pЧ10-7 (2.24)
Fср = 1,517 – 3,93 lpЧ10-3 + 947,2 l2pЧ10-7 (3.25)
С учетом (3.25) и (3.26) выражение (3.14) примет вид:
tв = (3.26)
Тогда искомая производительность определится из выражения
WB = WtB, (3.37)
где W – производительность за 1 час чистого рабочего времени, га/ч.
Определить значение оптимальной ширины почвообрабатывающего агрегата в зависимости от длины гона и удельного сопротивления орудия, можно, продифференцировав выражение (3.30) в полном развернутом виде по скорости, получив вначале оптимальное значение Vp. Для этого, после подстановки вместо tв значений входящих в него величин, получим
(3.28)
или в не полностью развернутом виде:
(3.29)
(3.30)
3.5.6 Контроль и оценка качества работы
Глубину культивации и внесения удобрений, ровность дна взрыхленного слоя почвы, гребнистость поверхности обработанных междурядий, ширину защитной зоны и полноту подрезания сорняков определяют в 3...4 местах по диагонали (на концах и в середине участка) по всей ширине рабочего захвата агрегата.
Среднюю величину этих показателей определяют путем деления суммы всех замеров на их количество.
Порядок определения глубины культивации, ровности дна взрыхленного слоя и гребнистости поверхности обработанных междурядий такой же, что и при сплошной культивации.
Средняя ширина защитной зоны определяется путем деления средней ширины защитной полосы на 2. Количество подрезанных, поврежденных и засыпанных культурных растений определяют в процентах от общего количества путем подсчета их в 3...4 местах по диагонали на учетных площадках длиной 20 м по всей ширине захвата агрегата и во всех обработанных междурядиях. Тут же определяют полноту подрезания сорняков. Количество неподрезанных сорняков в
среднем на одну контрольную площадку не должно превышать при культивации – 1…2 растений.
Наличие огрехов и пропусков, выворачивание глыб и нижних влажных слоев почвы на поверхность устанавливают путем осмотра поля при прохождении по диагонали и по краям. Огрехи обрабатывают дополнительно.
Таблица 3.2 Показатели оценки качества работы
Качество работы на междурядной обработке оценивают по показателям, приведенным в таблице 3.2.
Выводы
Таким образом, в разделе 3 нами изучен передовой опыт и проанализированы средства механизации для возделывания и уборки кормовой свёклы. С учётом условий СПК «Орловский» разработана усовершенствованная технология возделывания и уборки кормовой свёклы. Рассчитана технологическая карта на возделывание и уборку кормовой свёклы. При этом составлен рациональный перечень операций, подобраны наиболее производительные и экономичные агрегаты, рекомендована оптимальная система удобрений, повышен уровень механизации работ. Разработана операционно-технологическая карта на междурядную обработку свёклы с использованием разработанного зубового рыхлителя. Применение разработанной технологии в СПК «Орловский» позволит повысить урожайность, производительность труда и снизить себестоимость продукции.
4. Обоснование параметров и разработка конструкции зубового рыхлителя
4.1 Обоснование актуальности конструкторской разработки
В разделе 3 нами разработана технология возделывания кормовой свёклы для условий СПК «Орловский». Данная технология основана на передовом опыте хозяйств Московской области. При её внедрении получены высокие результаты. Средняя урожайность корнеплодов в хозяйствах Московской области составила 693 ц/га, затраты ручного труда на формировании и полке сорняков 96 чел-ч/га, а себестоимость одного центнера корнеплодов - 2,5 руб.
Разработанная технология предусматривает активное использование зубового рыхлителя почвы в междурядьях на всех стадиях развития растений.
В связи с изложенными обстоятельствами, обоснование параметров и разработка конструкции зубового рыхлителя является актуальной для СПК «Орловский» задачей.
4.2 Устройство и характеристика рыхлителя зубового пропашного
Рыхлитель зубовый пропашной предназначен для довсходовой и междурядной обработок кормовой свеклы. Техническая характеристика его приведена ниже:
Ширина захвата, см 31…70
Рабочая скорость, км/ч 3,5…9,0
Производительность в