183777 (584796)

Файл №584796 183777 (Применение линейного программирования для решения задач оптимизации)183777 (584796)2016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ

Филиал в г. Брянске

Контрольная РАБОТА

по дисциплине

ЭКОНОМИКО-МАТЕМАТИЧЕСКИЕ МЕТОДЫ И ПРИКЛАДНЫЕ МОДЕЛИ

Вариант №2

Брянск – 2009

ЗАДАЧА 1

Задача о раскрое

1. В обработку поступили две партии досок для изготовления комплектов из трех деталей (треугольные каркасы настилов на стройплощадку), причем первая партия содержит 52 доски длиной по 6,5 м каждая, вторая содержит 200 досок длиной по 4 м каждая. Каждый комплект состоит из двух деталей по 2 м каждая и одной детали в 1,25 м.

Ставится задача поиска рационального варианта раскроя поступившего в обработку материала.

Решение:

Безусловно, в этой задаче о раскрое критерий оптимальности – «максимум выпуска (реализации) комплектной продукции». Построим возможные способы раскроя исходного материала, с этой целью составим таблицу:

Доска 6,5 м

Доска 4 м

2,0 м

1,25 м

Отходы

2,0 м

1,25 м

Отходы

х111)

2

2

0

х215)

2

0

0

х122)

1

3

0,75

х226)

1

1

0,75

х133)

0

5

0,25

х237)

0

3

0,25

х144)

3

0

0,5

Введем необходимые обозначения: хij – число досок из i-й партии (i=1,2), которое следует раскроить j-м способом.

Рассмотрим соотношения:

.

Обозначим через Z-минимальное из этих соотношений (это и будет количество комплектной продукции). Следовательно, экономико-математическая модель примет вид:

,

,

,

,

xij, Z – целые неотрицательные.

Для удобства записи заменим двухиндексные переменные xij, и Z на одноиндексные переменные yj так как это показано в таблице раскроя (Z=y8). ЭММ задачи будет иметь вид:

при ограничениях:

yj, j=1,8 – целые неотрицательные.

В табл.1 приведены указания на ячейки-формулы.

Таблица 1 - Формулы рабочей таблицы

Ячейка

Формула

I7

=СУММПРОИЗВ(B4:I4;B5:I5)

J9

=СУММПРОИЗВ(B$4:I$4;B9:I9)

J10

=СУММПРОИЗВ(B$4:I$4;B10:I10)

J11

=СУММПРОИЗВ(B$4:I$4;B11:I11)

J12

=СУММПРОИЗВ(B$4:I$4;B12:I12)

Реализуя приведенную модель, получим решение:

(оптимальные значения остальных переменных равны нулю).

Следовательно, в данной хозяйственной ситуации максимальное количество наборов, равное 215 шт. можно изготовить и реализовать, если:

- раскроить каждую из 15 досок длиной 6,5 м на 2 детали по 2 м и 2 детали по 1,25 м;

- раскроить каждую из 37 досок длиной 6,5 м на 5 деталей по 1,25 м;

- раскроить каждую из 200 досок длиной 4 м на 2 детали по 2 м.

В этом случае мы получим максимальную выручку.

ЗАДАЧА 2

Транспортная задача

Компания, занимающаяся ремонтом автомобильных дорог, в следующем месяце будет проводить ремонтные работы на пяти участках автодорог. Песок на участки ремонтных работ может доставляться из трех карьеров, месячные объемы предложений по карьерам известны. Из планов производства ремонтных работ известны месячные объемы потребностей по участкам работ. Имеются экономические оценки транспортных затрат (в у.е.) на перевозку 1 тонны песка с карьеров на ремонтные участки.

Числовые данные для решения содержатся ниже в матрице планирования.

Требуется:

  1. Предложить план перевозок песка на участки ремонта автодорог, который обеспечивает минимальные совокупные транспортные издержки.

  2. Определить, что произойдет с оптимальным планом, если изменятся условия перевозок: а) появится запрет на перевозки от первого карьера до второго участка работ; б) по этой коммуникации будет ограничен объем перевозок 3 тоннами.

Матрица планирования:

Участок работ

Карьер

В1

В2

В3

В4

В5

Предложение

А1

3

3

5

3

1

500

А2

4

3

2

4

5

300

А3

3

7

5

4

1

100

Потребности

150

350

200

100

100

Решение:

1. Данная задача является транспортной задачей линейного программирования, закрытой моделью.

  1. Создадим форму для решения задачи, т.е. создадим матрицу перевозок. Для этого необходимо выполнить резервирование изменяемых ячеек: в блок ячеек В3:F5 вводится «1». Таким образом, резервируется место, где после решения задачи будет находиться распределение перевозок песка на участки ремонта автодорог, обеспечивающее минимальные совокупные транспортные издержки.

  2. Введем граничные условия.

Введение условия реализации предложения:

,

где - предложение i-ого карьера;

- объем перевозки песка от i-ого карьера к j-ому участку работ;

n – количество участков работ.

Для этого просуммируем ячейки B3:F3; B4:F4; B5:F5, поместив результат в ячейки А3; А4; А5 соответственно.

Введение условия потребностей участков работ:

,

где b- потребности j-ого участка работ;

m - количество карьеров.

Для этого просуммируем ячейки В3:В5; С3:С5; D3:D5; E3:E5; F3:F5, поместив результаты в ячейки B6; C6; D6; E6; F6 соответственно.

  1. Введем исходные данные.

В ячейки А11:А13 введем предложение по карьерам, в B10:F10 потребности по участкам работ, а также удельные затраты по перевозке песка из карьера на участок работ (ячейки B11:F13) (см. рис.1).



Рис. 1 - Ввод исходных данных и граничных условий

4) Назначим целевую функцию.

Для вычисления значения целевой функции, соответствующей минимальным суммарным затратам на перевозку, необходимо зарезервировать ячейку и ввести формулу для ее вычисления:

,

где - стоимость доставки 1т песка от i-ого карьера к j-ому участку работ;

- объем поставки песка от i-ого карьера к j-ому участку работ.

Для этого в ячейку В15 вставим функцию: СУММ ПРОИЗВ (B11:F13;B3:F5).

5) Введем зависимости из математической модели. Для этого в окне Поиск решения установим целевую ячейку $B$15, установим направление изменения целевой функции, равное «минимальному значению», введем адреса изменяемых ячеек $B$3:$F$5, добавим ограничения: $A$3:$A$5=$A$11:$A$13; $B$6:$F$6=$B$10:$F$10 (см. рис.2).



Рис. 2 - Ввод зависимостей из математической модели

6) Введем ограничения. Для этого в окне Параметры поиска решения установим Линейная модель и Неотрицательные значения. Затем выполним поиск решения, нажав Выполнить (см. рис.3).



Рис. 3 - Установление параметров задачи

7) Просмотрим результаты и выведем отчет.

Таким образом, план перевозок примет вид:

- с 1-го карьера на 1-ый участок ремонта в объеме 150 ед., на 2-ой в объеме 250 ед. и на 4-ый в объеме 100 ед. (условных);

- с 2-го карьера на 2-ой участок ремонта в объеме 100 ед. и на 3-ий в объеме 200 ед. (условных);

- с 3-его карьера на 5-ый участок ремонта в объеме 100 ед. (условных).

Совокупные минимальные транспортные издержки составят 2300 у.е.

а) Если появится запрет на перевозки от первого карьера до второго участка работ, то зависимости модели и решение задачи будут выглядеть следующим образом (см. рис.4,5):



Рис. 4 - Ввод зависимостей из математической модели



Рис. 5 - Результаты решения

Таким образом, план перевозок примет вид:

- с 1-го карьера на 1-ый участок ремонта в объеме 150 ед., на 3-ий в объеме 150 ед., на 4-ый в объеме 100 ед. и на 5-ый участок 100 ед. (условных);

Характеристики

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6517
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее