181779 (584273), страница 2

Файл №584273 181779 (Статистические наблюдения по валовому региональному продукту автономных образований России) 2 страница181779 (584273) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Сводные данные приведем в таблице 6.

Таблица 6. Сводная группировка

№ группы

Валовой региональный продукт, млн. руб.

Уд. Вес, %

Общая численность населения, тыс. чел

Уд. Вес, %

Численность занятого населения, тыс. чел

Уд. Вес, %

Стоимость основных фондов, млн. руб.

Уд. Вес, %

1

380992

26,9

15341,5

61,4

6160,4

58,4

1553901

50,1

2

677513,7

47,9

8232,8

33,0

3593,5

34,1

904350

29,2

3

-

-

-

-

-

-

-

-

4

-

-

-

-

-

-

-

-

5

356139

25,2

1401,9

5,6

792

7,5

641474

20,7

Итого

1414644,7

100,0

24976,2

100,0

10545,9

100,0

3099725

100,0

  1. Зависимость валового регионального продукта от стоимости основных фондов – прямо пропорциональна, от численности занятого населения – обратно пропорциональна и зависит от природных богатств региона.

  2. Полученная группировка нестандартна, так как отсутствуют 3,4 группы, но тем не менее, основное количество объектов исследования находится в 1-й группе, максимальные общие показатели находятся во 2-й группе, но при этом 5-я группа, несмотря на единственный объект, является лидером по всем показателям.

Задание №3

1. Определим нижнюю и верхнюю интервальные границы для каждой группы и составим рабочую таблицу, куда сведем первичный статистический материал:

Таблица 7. Рабочая таблица

№ группы

Валовой региональный продукт, млн.

руб.

Количество регионов, Fj

Середина интервала, млн

руб. Xj

Xj * Fj

Накопленная частота f

1

2030,7–72852,4

23

37441,55

61155,65

23

2

72852,4–143674,1

6

108263,25

649579,5

29

3

143674,1–214495,8

-

179084,95

-

29

4

214495,8–285317,5

-

249906,65

-

29

5

285317,5–356139

1

320728,25

320728,25

30

Итого

30

1031463,4

Средняя арифметическая взвешенная:

Хср = 1031463,4 / 30 = 34382,1

Для определения показателей вариации вариационного ряда составим промежуточную таблицу на основе группировочной таблицы.

Таблица 8. Промежуточная таблица

Середина интервала по группам,

млн. руб.

Х

Количество регионов, F

(X-Xcр)

│X-Xcр│ F

(X-Xcр)2 F

37441,55

23

3059,45

70367,35

215285388,96

108263,25

6

73881,15

443286,9

32750545951,9

179084,95

-

144702,85

-

-

249906,65

-

215524,55

-

-

320728,25

1

286346,15

286346,15

81994117619,8

Итого

30

800000,4

114959948960,66

Размах вариации:

R =Xmax – Xmin=356139 – 2030,7 = 354108,3

Среднее линейное отклонение (взвешенное):

L =Σ (Х-Хср) F / n = 800000,4/30 = 266666,8 млн. руб.

Среднее квадратическое отклонение:

δ = √3831998298,68 = 61903,14

Дисперсия:

δ2 = 114959948960,66 / 30 = 3831998298,68

2. При построении гистограммы на оси абсцисс откладываются отрезки, соответствующие величине интервалов ряда. На отрезках строятся прямоугольники, площадь которых пропорциональна частотам интервала.

Вывод. По полученным графикам можно констатировать, что от группы к группе количество обследуемых объектов уменьшалось, при этом произошел разрыв между 2-й и 5-й группами, что подтверждается графиками гистограммы и полигона распределения. График куммуляты показывает, что от группы к группе нарастающим итогом происходило увеличение ВРП.

Средняя величина ВРП равна средней арифметической простой:

Хср = ∑Х / n = 1414644,7 / 30 = 47154,82

Коэффициент вариации V = 61903,14 / 34382,1 = 1,80

Модальным интервалом является интервал с наибольшей частотой. Моду в интервальном ряду находим по формуле

Мо = Хмо + I (Fmo – F-1) / ((Fmo – F-1) + (Fmo – F+1)), где

Хмо – начало модального интервала

Fmo – частота, соответствующая модальному интервалу

F-1 и F+1 – предмодальная и послемодальная частота

Мо = 2030,7 + 70821,7*(23–0) / ((23–0) +(23–6)) = 42753,18

Медианой называется вариант, который находится в середине вариационного ряда. В нашем случае это 15-й регион по порядку возрастания ВРП, т.е.

Ме=15462,2 млн. руб.

Квартили Q – значения признака в ряду распределения, выбранные таким образом, что 25% единиц совокупности будут меньше по величине Q1, 25% единиц будут заключены межу Q1 и Q2, 25% – между Q2 и Q3, и остальные 25% превосходят Q3.

Q1= XQ1 + h ((n+1)/4 – S-1) / fQ1, где

XQ1 – нижняя граница интервала, в которой находится первая квартиль;

S-1 – сумма накопленных частот интервалов, предшествующих интервалу, в котором находится первая квартиль;

fQ1 – частота интервала, в котором находится первая квартиль

Q1 =2030,7+70821,7 * (31/4–0)/ 23 = 25894,5

Q2 = 2030,7+70821,7*(31/2–0)/23 = 49758,4

Q3 = 72852,4+70821,7*(31*0,75–23)/23=144443,9

4. Проверим гипотезу о законе распределения с помощью критерия согласия Пирсона χ2.

Рассчитаем теоретические частоты попадания количества регионов в соответствующие группы. Х1 и Х2 – соответственно нижние и верхние границы интервалов. Т1 и Т2 – нормированные отклонения для нижней и верхней границ интервала. F1 и F2 – значения интегральной функции Лапласа для Т1 и Т2 – определяем по таблицам Лапласа. Оценка попадания случайной величины Р определяется как разница F(T1) – F(T2). Теоретическая частота f' = Р х 30. Составим таблицу 9.

Таблица 9. Расчет теоретических частот

Границы интервала

Фактич. частота f

T1 = (Х1 – Хср) / σ

T2 = (Х2 – Хср) / σ

F(Т1)

F (Т2)

Р

Теоретич. частота f'

-∞ – 2030,7

0

-∞

-0,729

-0,50

-0,2673

0,2327

7

-2030,7–72852,4

23

-0,729

0,415

-0,2673

0,1628

0,4301

13

72852,4–143674,1

6

0,415

1,559

0,1628

0,4406

0,2778

8

143674,1–214495,8

0

1,559

2,703

0,4406

0,4965

0,0559

2

214495,8–285317,5

0

2,703

3,847

0,4965

0,4999

0,0034

0

285317,5–356139

1

3,847

4,991

0,4999

0,5

0,0001

0

356139 – +∞

0

4,991

+∞

0,5

0,5

0

0

Итого

30

1,00

30

Проверка показывает, что расчеты сделаны правильно, так как равен итог фактических и теоретических частот.

Рассчитаем значение χ2 = ∑ (f – f')2 / f', произведя расчеты в таблице

Оставляем 2 группы, объединив 1,2 в 1-ю группу, 3–7 во 2-ю группу. Результаты заносим в таблицу 10.

Таблица 10. Расчет фактического значения по критерию Пирсона

Границы интервала

f – f'

(f – f')2

(f – f')2 / f'

-∞ -72852,4

3

9

0,45

72852,4-+∞

-3

9

0,9

Итого

1,35

Табличное значение критерия Пирсона при числе степеней свободы 1 и вероятности 0,99 составляет 1,64. Расчетное значение χ2 меньше табличного, поэтому гипотеза о близости эмпирического распределения к нормальному не отвергается.

Задание №4

1. По таблице случайных чисел определим порядковые номера и вид выборки. В выборочную совокупность войдут регионы по двум последним цифрам из 30 первых чисел подряд. Получаем:

12; 20; 22; 20; 24; 12.

Характеристики

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7026
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее