180629 (584033), страница 4
Текст из файла (страница 4)
Значения показателя
изменяются в пределах
. При отсутствии корреляционной связи между признаками Х и Y имеет место равенство
=0, а при наличии функциональной связи между ними - равенство
=1.
Общая дисперсия
характеризует вариацию результативного признака, сложившуюся под влиянием всех действующих на Y факторов (систематических и случайных). Этот показатель вычисляется по формуле
(10)
где yi – индивидуальные значения результативного признака;
– общая средняя значений результативного признака;
n – число единиц совокупности.
Общая средняя
вычисляется как средняя арифметическая простая по всем единицам совокупности:
(11)
или как средняя взвешенная по частоте групп интервального ряда:
(12)
Для вычисления
удобно использовать формулу (11), т.к. в табл. 8 (графы 3 и 4 итоговой строки) имеются значения числителя и знаменателя формулы.
Расчет
по формуле (11):
=133080/30=4436 млн руб.
Для расчета общей дисперсии
применяется вспомогательная таблица 12.
Таблица 12
Вспомогательная таблица для расчета общей дисперсии
| Номер банка п/п | Собственный капитал, млн руб. |
|
|
|
| 1 | 2 | 3 | 4 | 5 |
| 1 | 3900 | -536 | 287296 | 15210000 |
| 2 | 4500 | 64 | 4096 | 20250000 |
| 3 | 3000 | -1436 | 2062096 | 9000000 |
| 4 | 2300 | -2136 | 4562496 | 5290000 |
| 5 | 3700 | -736 | 541696 | 13690000 |
| 6 | 3200 | -1236 | 1527696 | 10240000 |
| 7 | 3780 | -656 | 430336 | 14288400 |
| 8 | 4000 | -436 | 190096 | 16000000 |
| 9 | 3100 | -1336 | 1784896 | 9610000 |
| 10 | 4600 | 164 | 26896 | 21160000 |
| 11 | 2200 | -2236 | 4999696 | 4840000 |
| 12 | 5280 | 844 | 712336 | 27878400 |
| 13 | 4700 | 264 | 69696 | 22090000 |
| 14 | 4400 | -36 | 1296 | 19360000 |
| 15 | 6500 | 2064 | 4260096 | 42250000 |
| 16 | 5000 | 564 | 318096 | 25000000 |
| 17 | 2500 | -1936 | 3748096 | 6250000 |
| 18 | 1800 | -2636 | 6948496 | 3240000 |
| 19 | 4200 | -236 | 55696 | 17640000 |
| 20 | 5600 | 1164 | 1354896 | 31360000 |
| 21 | 7962 | 3526 | 12432676 | 63393444 |
| 22 | 5850 | 1414 | 1999396 | 34222500 |
| 23 | 400 | -4036 | 16289296 | 160000 |
| 24 | 4900 | 464 | 215296 | 24010000 |
| 25 | 8400 | 3964 | 15713296 | 70560000 |
| 26 | 7088 | 2652 | 7033104 | 50239744 |
| 27 | 5100 | 664 | 440896 | 26010000 |
| 28 | 4300 | -136 | 18496 | 18490000 |
| 29 | 6020 | 1584 | 2509056 | 36240400 |
| 30 | 4800 | 364 | 132496 | 23040000 |
| Итого | 133080 | 0 | 90670008 | 681012888 |
Расчет общей дисперсии по формуле (10):
=90670008/30=3022333,6
Общая дисперсия может быть также рассчитана по формуле
,
где
– средняя из квадратов значений результативного признака,
– квадрат средней величины значений результативного признака.
Для демонстрационного примера
=681012888/30=22700429,6
=19678096
Тогда
=
-
=22700429,6-19678096=3022333,6
Межгрупповая дисперсия
измеряет систематическую вариацию результативного признака, обусловленную влиянием признака-фактора Х (по которому произведена группировка). Воздействие фактора Х на результативный признак Y проявляется в отклонении групповых средних
от общей средней
. Показатель
вычисляется по формуле
, (13)
где
–групповые средние,
– общая средняя,
–число единиц в j-ой группе,
k – число групп.
Для расчета межгрупповой дисперсии
строится вспомогательная таблица 13 При этом используются групповые средние значения
из табл. 8 (графа 5).
Таблица 13
Вспомогательная таблица для расчета межгрупповой дисперсии
| Группы банков по прибыли, млн руб. | Число банков,
| Среднее значение |
|
|
| 1 | 2 | 3 | 4 | 5 |
| 50-110 | 3 | 2100 | -2336 | 16370688 |
| 110-170 | 6 | 3080 | -1356 | 11032416 |
| 170-230 | 12 | 4340 | -96 | 110592 |
| 230-290 | 7 | 5694 | 1258 | 11077948 |
| 290-350 | 2 | 8181 | 3745 | 28050050 |
| Итого | 30 | 66641694 |
Расчет межгрупповой дисперсии
по формуле (11):
=66641694/30=2221389,8
Расчет эмпирического коэффициента детерминации
по формуле (9):
=2221389,8/3022333,6=0,735 или 73,5%
Вывод. 75,3% вариации суммы прибыли банков обусловлено вариацией объема прибыли, а 24,7% – влиянием прочих неучтенных факторов.
Эмпирическое корреляционное отношение
оценивает тесноту связи между факторным и результативным признаками и вычисляется по формуле
(14)
Значение показателя изменяются в пределах
. Чем ближе значение
к 1, тем теснее связь между признаками. Для качественной оценки тесноты связи на основе
служит шкала Чэддока (табл. 14):
















