180629 (584033), страница 2

Файл №584033 180629 (Основные статистические расчеты) 2 страница180629 (584033) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Распределение банков по прибыли

Номер группы

Группы банков по прибыли, млн руб.,

Число банков,

f

1

50-110

3

2

110-170

6

3

170-230

12

4

230-290

7

5

290-350

2

Итого

30

Помимо частот групп в абсолютном выражении в анализе интервальных рядов используются ещё три характеристики ряда, приведенные в графах 4 - 6 табл. 1.4. Это частоты групп в относительном выражении, накопленные (кумулятивные) частоты Sj, получаемые путем последовательного суммирования частот всех предшествующих (j-1) интервалов, и накопленные частости, рассчитываемые по формуле .

Таблица 5

Структура банков по прибыли

№ группы

Группы банков по прибыли, млн руб.

Число банков, fj

Накопленная

частота,

Sj

Накопленная

частоcть, %

в абсолютном выражении

в % к итогу

1

2

3

4

5

6

1

50-110

3

10

3

10,0

2

110-170

6

20

9

30,0

3

170-230

12

40

21

70,0

4

230-290

7

23,3

28

93,3

5

290-350

2

6,7

30

100,0

Итого

30

100,0

Вывод. Анализ статистического ряда распределения изучаемой совокупности банков показывает, что распределение банков по объему прибыли не является равномерным: преобладают банки с прибылью от 170 млн руб. до 230 млн руб. (это 12 банков, доля которых составляет 40%); 30% банков имеют прибыль менее 170 млн руб., а 70% – менее 230 млн руб.

1.2 Нахождение моды и медианы полученного интервального ряда распределения графическим методом и путем расчетов

Мода и медиана являются структурными средними величинами, характеризующими (наряду со средней арифметической) центр распределения единиц совокупности по изучаемому признаку.

Мода Мо для дискретного ряда – это значение признака, наиболее часто встречающееся у единиц исследуемой совокупности. В интервальном вариационном ряду модой приближенно считается центральное значение модального интервала (имеющего наибольшую частоту). Более точно моду можно определить графическим методом по гистограмме ряда (рис.1).

Р ис. 1 Определение моды графическим методом

Для определения моды графическим способом на гистограмме распределения правую вершину модального прямоугольника соединяют с правым верхним углом предыдущего прямоугольника, а левую вершину модального прямоугольника – с левым верхним углом последующего прямоугольника. Абсцисса точки пересечения этих прямых будет модой распределения.

Конкретное значение моды для интервального ряда рассчитывается по формуле:

(3)

где хМo – нижняя граница модального интервала,

h –величина модального интервала,

fMo – частота модального интервала,

fMo-1 – частота интервала, предшествующего модальному,

fMo+1 – частота интервала, следующего за модальным.

Согласно табл. 3 модальным интервалом построенного ряда является интервал 170 – 230 млн. руб., так как его частота максимальна (f3 = 12).

Расчет моды по формуле (3):

Mo=170+60*((12-6)/((12-6)+(12-7)))=202,727 млн руб.

Вывод. Для рассматриваемой совокупности банков наиболее распространенный объем прибыли характеризуется средней величиной 202,727 млн руб.

Медиана Ме – это значение признака, приходящееся на середину ранжированного ряда. По обе стороны от медианы находится одинаковое количество единиц совокупности.

Медиану можно определить графическим методом по кумулятивной кривой (рис. 2). Кумулята строится по накопленным частотам (табл. 5, графа 5).

Для определения медианы графическим способом высоту наибольшей ординаты кумуляты, которая соответствует общей численности, делят пополам. Через полученную точку проводят прямую, параллельную оси абсцисс до пересечения ее с кумулятой. Абсцисса точки пересечения является медианной величиной.

Рис. 2. Определение медианы графическим методом

Конкретное значение медианы для интервального ряда рассчитывается по формуле:

, (4)

где хМе– нижняя граница медианного интервала,

h – величина медианного интервала,

– сумма всех частот,

fМе – частота медианного интервала,

SMе-1 – кумулятивная (накопленная) частота интервала, предшествующего медианному.

Для расчета медианы необходимо, прежде всего, определить медианный интервал, для чего используются накопленные частоты (или частости) из табл. 5 (графа 5). Так как медиана делит численность ряда пополам, она будет располагаться в том интервале, где накопленная частота впервые равна полусумме всех частот или превышает ее (т.е. все предшествующие накопленные частоты меньше этой величины).

В демонстрационном примере медианным интервалом является интервал 170 – 230 млн. руб., так как именно в этом интервале накопленная частота Sj = 21 впервые превышает величину, равную половине численности единиц совокупности

( = ).

Расчет значения медианы по формуле (4):

Ме=170+60*((30/2-9)/12)=200 млн руб.

Вывод. В рассматриваемой совокупности банков половина банков имеют в среднем объем прибыли не более 200 млн руб., а другая половина – не менее 200 млн руб.

1.3 Расчет характеристик интервального ряда распределения

Для расчета характеристик ряда распределения , σ, σ2, Vσ на основе табл. 5 строится вспомогательная таблица 6 ( – середина j-го интервала).

Таблица 6

Расчетная таблица для нахождения характеристик ряда распределения

Группы банков по объему прибыли, млн руб.

Середина интервала,

Число банков,

fj

1

2

3

4

5

6

7

50-110

80

3

240

-117,333

13924,000

41772

110-170

140

6

840

-57,333

3364,000

20184

170-230

200

12

2400

2,667

4,000

48

230-290

260

7

1820

62,667

3844,000

26908

290-350

320

2

640

112,667

14884,000

29768

Итого

30

5940

118680

Расчет средней арифметической взвешенной: (5)

=5940/30=198 млн руб.

Расчет среднего квадратического отклонения:

(6)

σ=118680/30=62,897 млн руб.

Расчет дисперсии:

σ2 =61,641 2=3956

Расчет коэффициента вариации:

(7)

Vσ=62,897*100/198=31,77 %

Вывод. Анализ полученных значений показателей и σ говорит о том, что средний объем прибыли банков составляет 198 млн руб., отклонение от среднего объема в ту или иную сторону составляет в среднем 62,897 млн руб. (или 31,77 %), наиболее характерные значения объема прибыли находятся в пределах от 135,103 млн руб. до 260,897 млн руб. (диапазон ).

Значение Vσ = 31,77 % не превышает 33%, следовательно, вариация кредитных вложений в исследуемой совокупности банков незначительна и совокупность по данному признаку качественно однородна.

Расхождение между значениями , Мо и Ме незначительно ( =198 млн руб., Мо=202,727 млн руб., Ме=200 млн руб.), что подтверждает вывод об однородности совокупности банков. Таким образом, найденное среднее значение объема прибыли банков (198 млн руб.) является типичной, надежной характеристикой исследуемой совокупности банков.

1.4 Вычисление средней арифметической по исходным данным

Для расчета применяется формула средней арифметической простой:

Характеристики

Тип файла
Документ
Размер
2,22 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6540
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее