177781 (583418), страница 3

Файл №583418 177781 (Основы экономики) 3 страница177781 (583418) страница 32016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Просматривая все полные некритические пути, убеждаемся, что при сокращении срока строительства на 2 дня, т.е. до 44 дней, критическими могут стать пути Р4 и Р5 . Эффективно сократить работу Q на 2 дня. При этом дополнительные затраты составят 2 (дня) 7,7 (млн.руб./день) = 15,4(млн.руб.), критическое время станет равным Ткр = 46 –2 =44 (дней). Новая стоимость работ будет равной S = 503,5 +15,4=518,9(млн.руб.)


5. Задача 5

Имеются данные по 15 субъектам Российской Федерации за январь-март 2001 года о денежных доходах и потребительских расходах на душу населения в среднем за месяц, которые приведены в таблице:

Номер субъекта РФ

1

2

3

4

5

6

7

8

Денежные доходы, тыс.руб.

1,57

1,3

1,75

1,66

1,75

1,79

1,33

1,58

Потребительские расходы, тыс.руб

1,29

1,15

1,3

1,36

1,67

1,59

1,08

1,28

Номер субъекта РФ

9

10

11

12

13

14

15

Денежные доходы, тыс.руб.

2,24

2,47

2,29

2,07

2,43

3,51

2,21

Потребительские расходы, тыс.руб

1,65

1,76

1,7

1,88

1,8

2,74

1,76

На основе имеющихся данных требуется:

1. Построить поле рассеяния наблюдаемых значений показателей и на основе его визуального наблюдения выдвинуть гипотезу о виде статистической зависимости потребительских расходов у от денежных доходов х; записать эту гипотезу в виде математической модели.

2. Используя метод наименьших квадратов найти точечные оценки неизвестных параметров модели, записать найденное уравнение регрессии и построить график функции регрессии.

3. Найти коэффициент парной корреляции между денежными доходами и потребительскими расходами; проверить его значимость.

4. Найти точечный и интервальный прогноз среднемесячных потребительских расходов в 10-ом субъекте РФ увеличится на 30%.

5. Привести содержательную интерпретацию полученных результатов.

Решение

5.1 Построение математической модели. Оценка неизвестных параметров методом наименьших квадратов. Полем рассеяния называется множество точек на плоскости, координаты которых соответствуют наблюдаемым значениям исследуемых показателей. В нашем примере хi – среднедушевые денежные доходы, yi – среднедушевые потребительские расходы в i-м субъекте РФ, i = 1,…,15. Таким образом, поле рассеяния состоит из 15-ти точек с координатами (xi,yi), которые показаны на рис.

Визуальный анализ поля рассеяния позволяет выдвинуть гипотезу о линейной зависимости потребительских расходов у от денежных доходов х и записать эту зависимость в виде линейной модели

у = α + βх + u,

где α, β - неизвестные постоянные коэффициенты, а u – случайная величина, характеризующая отклонения реальных значений потребительских расходов от их теоретических значений α + βх. Случайная величина u называется случайным отклонением или случайным возмущением модели. Ее включение в модель призвано отразить:

а) влияние не учтенных в модели факторов, влияющих на размер потребительских расходов;

б) элемент случайности и непредсказуемости человеческих реакций;

в) ошибки наблюдений и измерений.

5.2 После формулировки математической модели основная задача состоит в получении оценок неизвестных параметров α и β по результатам наблюдений над переменными х и у, т.е. задача состоит в получении так называемого уравнения регрессии у = a + bх, являющегося некоторой реализацией модели, в котором коэффициенты а и b есть оценки неизвестных параметров α и β соответственно. Оценки а и b можно искать по следующим формулам:

Для удобства вычисления оценок искомых коэффициентов модели составляется табл.1, в которой столбцы "у", "у - у", "(у - у)2" заполняются после нахождения уравнения регрессии.

Табл.1

Номер субъекта РФ

х

у

х2

ху

у2

ŷ

ŷ-у

(ŷ-у)2

1

1,57

1,29

2,465

2,025

1,664

1,309

0,019

0,000

2

1,30

1,15

1,690

1,495

1,323

1,125

-0,025

0,001

3

1,75

1,30

3,063

2,275

1,690

1,432

0,132

0,017

4

1,66

1,36

2,756

2,258

1,850

1,371

0,011

0,000

5

1,75

1,67

3,063

2,923

2,789

1,432

-0,238

0,057

6

1,79

1,59

3,204

2,846

2,528

1,459

-0,131

0,017

7

1,33

1,08

1,769

1,436

1,166

1,145

0,065

0,004

8

1,58

1,28

2,496

2,022

1,638

1,316

0,036

0,001

9

2,24

1,65

5,018

3,696

2,723

1,767

0,117

0,014

10

2,47

1,76

6,101

4,347

3,098

1,924

0,164

0,027

11

2,29

1,70

5,244

3,893

2,890

1,801

0,101

0,010

12

2,07

1,88

4,285

3,892

3,534

1,651

-0,229

0,053

13

2,43

1,80

5,905

4,374

3,240

1,897

0,097

0,009

14

3,51

2,74

12,320

9,617

7,508

2,635

-0,105

0,011

15

2,21

1,76

4,884

3,890

3,098

1,746

-0,014

0,000

cymm

29,95

24,01

64,262

50,989

40,738

24,010

0,000

0,222

Находим оценки а и b. Получаем:

хср = Σхi/15 =29,95/15 = 1,997 (тыс.руб.) – среднее значение среднедушевых доходов;

уср = Σуi/15 = 24,01/15 = 1,601 (тыс.руб.) – среднее значение среднедушевых потребительских расходов.

Следовательно, b = 0,683

а = уср – bxcp = 0,236

Таким образом, искомое уравнение регрессии примет вид

ŷ = 0,683x + 0,236

Найденное уравнение регрессии есть уравнение прямой, которая изображена на рис.

5.3. Нахождение коэффициента корреляции. Мерой зависимости между переменными х и у может служить выборочный коэффициент парной корреляции, который обозначается через rxy и определяется по формуле:

Подставляя соответствующие значения из последней строки табл.1, получаем rxy = 0,951, rxy > 0 и близко к 1, следовательно, связь сильная положительная, т.е. при увеличении доходов, расходы растут.

Для того, чтобы с большей уверенностью делать вывод о наличии или отсутствии линейной взаимосвязи между переменными х и у, разработан критерий проверки того, существенно ли отличие коэффициента корреляции от нуля или, другими словами, значимо ли значение коэффициента корреляции. Если в результате проверки выясняется, что коэффициент корреляции существенно отличается от нуля, то, несмотря даже на не очень близкое значение коэффициента к единице, делается вывод о наличии линейной взаимосвязи между переменными х и у. Если же подтверждается несущественное отличие rxy от нуля, то, не смотря на возможно достаточно большое значение коэффициента, делается вывод об отсутствии линейной взаимосвязи между переменными. Проверка существенности отличия коэффициента корреляции от нуля проводится по схеме:

то гипотеза о существенном отличии коэффициента корреляции от нуля принимается, в противном случае отвергается.

Здесь t1-α/2,n-2 – квантиль распределения Стьюдента, α - уровень значимости или уровень доверия, n – число наблюдений, (n-2) – число степеней свободы. Значение α задается исследователем зависимости между х и у. Примем α = 0,05, тогда t1-α/2,n-2 = t0,975,13 = 2,1604

Следовательно, коэффициент корреляции существенно отличается от нуля и существует сильная линейная связь между х и у. Т.е. если мы будем проводить многократное повторение эксперимента по исследованию зависимости между доходами и расходами, всякий раз выбирая различные группы из 15 субъектов РФ, то в 95% этих экспериментов будет обнаружена тесная линейная зависимость между х и у, т.е. в 95% случаев коэффициент корреляции rxy будет существенно отличатся от нуля.

5.4 Нахождение точечных и интервальных прогнозов. Точечным прогнозом значения зависимой переменной у, соответствующего некоторому значению независимой переменной х = х0, называется значение ŷ0, получаемое путем подстановки в уравнение регрессии х = х0, т.е.

Характеристики

Тип файла
Документ
Размер
6,14 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее