176873 (583215)
Текст из файла
Министерство образования Российской Федерации
ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Финансово-экономический факультет
Кафедра МММЭ
КОНТРОЛЬНАЯ РАБОТА
по дисциплине "Эконометрика"
Корреляционно-регрессионный анализ
ОГУ 061700.5001.03 00
Руководитель работы
__________________ Аралбаева Г.Г.
“____”_____________ 2002г.
Исполнитель
студент гр.99 з/о ст
______________ .Чаплыгина О.Г.
“_____”____________ 2002г.
Оренбург 2002 г.
Задание
Дана выборка из генеральной совокупности по производственно-хозяйственной деятельности предприятия машиностроения (Приложение 1). Исследуется N=53 объекта по пяти признакам:
X5 –Удельный вес рабочих в составе ППП;
X7 – Коэффициент сменности оборудования;
X10 - Фондоотдача;
X14– Фондовооруженность труда;
X17 – Непроизводственные расходы;
Y1- производительность труда;
На основе полученных данных необходимо:
На основе данных необходимо:
-
По исходным данным построить классическую линейную модель множественной регрессии, оценить значимость полученного уравнения регрессии и его коэффициентов, для значимых параметров построить доверительный интервал.
-
Проанализировать матрицу парных коэффициентов корреляции на наличие мультиколинеарности, если мультиколлинеарность присутствует устранить методом пошагового отбора переменных, отобрать наиболее информативные переменные и с помощью них построить модель регрессии, оценить ее значимость.
-
Проверить построенную модель на гетероскедастичность. Построить обобщенную модель множественной регрессии (случай гетероскедастичности остатков)
-
Проверить модель на наличие автокорреляции (с помощью критерия Дарбина-Уотсона) устранить с использованием обобщенного метода наименьших квадратов на случай автокоррелированности регрессионных остатков
Введение
Пусть имеется p объясняющих переменных и зависимая переменная У. Переменная У является случайной величиной, имеющей при заданных значениях факторов некоторое распределение. Если случайная величина Y непрерывна, то можно считать, что ее распределение при каждом допустимом наборе значений факторов (
) имеет условную плотность
.
Обычно делается некоторое предположение относительно распределения У. Чаще всего предполагается, что условные распределения У при каждом допустимом значении факторов – нормальные. Подобное предположение позволяет получить значительно более «продвинутые» результаты.
Объясняющие переменные могут считаться как случайными, так и детерминированными, т.е. принимающими определенные значения.
Классическая эконометрическая модель рассматривает объясняющие переменные как детерминированные, однако, основные результаты статистического исследования модели остаются в значительной степени теми же, что и в случае, если считать
случайными переменными.
Объясняющая часть – обозначим ее Уе – в любом случае представляет собой функцию от значений факторов – объясняющих переменных:
Таким образом, эконометрическая модель имеет вид
Наиболее естественным выбором объясненной части случайной величины У является ее среднее значение – условное математическое ожидание , полученное при данном наборе значений объясняющих переменных (х1,x2,..,xp)
Цель работы: Исследовать корреляционно – регрессионную зависимость между признаком у и группой аргументов .
Объект исследования : Производственные предприятия, занимающиеся производственной деятельностью.
Предмет исследования : корреляционная связь между признаками.
1. По исходным данным построить классическую линейную модель множественной регрессии, оценить значимость полученного уравнения регрессии и его коэффициентов, для значимых параметров построить доверительный интервал.
Построим собственно-линейную функцию регрессии вида: , оценка
Параметры модели будем искать МНК:
Матрица Х имеет размерность 6х53, в первой строке стоят единицы.
Используя пакет STADIA оцениваем уравнение регрессии.
Получаем следующие результаты:
Таблица 1
Коэфф. a0 a1 a2 a3 a4 a5
Значение -14,9 14,4 4 0,906 0,174 0,237
Ст.ошиб. 18,4 19,8 2,91 0,992 0,188 0,216
Значим. 0,575 0,523 0,172 0,631 0,637 0,278
Источник Сум.квадр. Степ.св Средн.квадр.
Регресс. 37,2 5 7,44
Остаточн 292 47 6,22
Вся 330 52
Множеств R R^2 R^2прив Ст.ошиб. F Значим
0,33602 0,11291 0,01854 2,4942 1,2 0,325
Гипотеза 0:
Оценка уравнения регрессии:
=-14,9+14,4х1+4,0х2+0,906х3 +0,174х4+0,237х5
(18,4) (19,8) (2,91) (0,992) (0.188) (0.216)
(внизу указаны стандартные ошибки каждого коэффициента регресии.)
Проверка значимости модели.
Проверим значимость построенной модели, выдвигаем гипотезу
H0: (модель незначима)
H1: (модель значима)
Строим статистику распределена по закону Фишера-Снедокора с числом ст. свободы n в числители и N-n-1 в знаменатели. (воспользуемся данными таблицы 1)
В нашем случае F=1,2, Fкр (0,05;5;47)=2,44 т.к Fн>Fкр,то гипотеза Н0 не отвергается и модель не является значимой.
Проверка значимости коэффициентов регрессии.
Проверим на значимость коэффициенты уравнения, выдвигаем гипотезу
Н0:
Н1:
Строим статистику t= распределена по закону Стьюдента с N-n-1 ст.свободы. (воспользуемся данными таблицы 1) (будем принимать коэффициенты регрессии по абсолютному значению)
tb0 =- 0,810 tb3 =0,913
tb1 =0,727 tb=0,926
tb2 =1,375 tb5 =1,097
tкр(0,05;47)=2,013
tb0 ->-tкр tb3 tb1 < tкр tb4 < tкр tb2 < tкр tb5 < tкр Среди всех коэффициентов значимыми являются b0, по такой модели прогноз сделать не представляется возможным, поскольку все коэффициенты регрессии при переменных не значимы. На этом регрессионный анализ можно завершить, так как значимых переменных не обнаружено. 2. Проанализировать матрицу парных коэффициентов корреляции на наличие мультиколинеарности, если мультиколлинеарность присутствует устранить методом пошагового отбора переменных, отобрать наиболее информативные переменные и с помощью них построить модель регрессии, оценить ее значимость. Коэффициент ковариации нормированных случайных величин называется коэффициентом корреляции, или коэффициентом парной корреляции. где Для удобства расчета корреляционной матрицы, предварительно рассчитывают ковариационную матрицу . Ковариационная матрица определяется как математическое ожидание произведения центрированного случайного вектора на этот транспонированный вектор Матрица где Рассмотрим матрицу исходных данных (см. Приложение 1) 1. Найдем центрированную матрицу Найдем оценку вектора где Используя пакет STADIA (Раздел описательная статистика), получаем вектор Согласно приведенной формуле 2. Рассчитываем матрицу Используя пакет STADIA (меню преобразований), получаем: Оценку ковариационной матрицы получим путем умножения матрицы Обозначим оценку ковариационной матрицы S, используя пакет MathCad находим: оценка ковариационной матрицы. Для расчета ковариационной матрицы воспользуемся формулой (1) и определением ковариационной матрицы (2), получаем следующую оценку корреляционной матрицы: Данный расчет можно провести на прямую, используя пакет STADIA, но наша цель бала показать весь процесс расчета корреляционной матрицы. Проанализируем корреляционную матрицу. 1 – я строка и 1 – столбец это признак у , как видим наибольшая связь наблюдается между признаками х7 и х14 очень тесная (-0,938) , если анализировать парную связь между факторными признаками, то можно заметить наибольшую связь между признаком х5 и х17 (-0,938). Устранение мультиколлинеарности с помощью метода пошаговой регрессии Устраним мультиколлинеарность методом пошаговой регрессии, который предполагает, что на каждом шаге мы будем включать в уравнение регрессии тот признак, который будет вызывать наибольшее приращение коэффициента детерминации. Шаг 1 Строим уравнения регрессии Находим максимальный коэффициент детерминации Вычисляем нижнюю границу коэффициента детерминации Используя пакет STADIA определяем: Переменная k X17 0.191 0.7117 1 Шаг 2 Строим уравнения регрессии Находим максимальный коэффициент детерминации Вычисляем нижнюю границу коэффициента детерминации Используя пакет STADIA определяем: Переменная k X7 0.7618 0.7117 1 Х7,Х9 0.8118 0.750 2 Шаг 3 Строим уравнения регрессии Находим максимальный коэффициент детерминации Вычисляем нижнюю границу коэффициента детерминации Используя пакет STADIA определяем: Переменная k X7 0.7618 0.7117 1 Х7,Х9 0.8118 0.750 2 Х7,Х9,X3 0.80953 0.735 3 Процесс прекращаем поскольку, Подробный анализ, выполненный с помощью программы “Stadia”, приведен в Приложении 1. Граф.1 Подробные расчеты см. Приложение 1 Таким образом , из анализа исключаются все факторные признаки, кроме Х7,X9 Проверить построенную модель на гетероскедастичность. Построить обобщенную модель множественной регрессии (случай гетероскедастичности остатков) 1.4 Построение и исследование новой модели регрессии. 1.4.1 Вычисление оценок коэффициентов регрессии Регрессионная модель примет вид: Вывод т.к. Проверка значимости и построение доверительных интервалов для коэффициентов регрессии Проверим значимость уравнения регрессии: H0: H1: Fвычисленное=57.1 Fкритическое (0,05;2;24)=3,40 так как Fвычисленное > Fкритическое , то принимается гипотеза Н1 , следовательно в уравнении коэффициенты регрессии должны быть значимыми. Проверим значимость коэффициентов регрессии tвычисленное = . . коэффициенты значимы, поскольку Построим доверительный интервал для коэффициентов по формуле: где Используя пакет STADIA находим доверительный интервал для коэффициента при переменной Х7,Х9. 1.4.2 Построение доверительного интервала для результативного признака где t-значение статистики Стьюдента при степенях свободы. Построим доверительный интервал прогноза в точке Критерий ранговой корреляции Спирмена. По выборочным данным строим регрессионную модель, которую оцениваем с помощью МНК. Вычисляем регрессионные остатки: еi=уi-ýi. Данные объясняющих переменных и остатки ранжируют, после чего исследуют зависимость между хi и εi. Для этого выдвигаем гипотезу Нo: нет зависимости между объясняющей переменной и регрессионными остатками ( она равносильна гипотезе о том, что нет явления гетероскедастичности), Нı: есть зависимость, т.е. явление гетероскедастичности наблюдается. Для проверки гипотезы строится статистика, распределенная нормально с математическим ожиданием равным нулю и дисперсией равной 1: t= где Rx,e=1-6* На заданном уровне значимости α=0.05 по таблице нормального распределения находим tкр Если tн>t, то нулевую гипотезу отвергаем, значит есть явления гетероскеластичности, в противном случае явление гетероскедастичности наблюдаем. В случае наличия гетероскедастичности, используя ОМНК оценим регрессию, взяв в качестве матрицы Ω= rang xi rang ei Di Di2 21.3 69.2 77.9 17.1 18.4 37.9 72.2 27.5 58.2 46.2 74 43.5 18.8 59.5 52.2 65.1 60.2 2.63 84 19.8 78.7 62 104 69.3 78.9 15.1 51.5 84.98 30.58 38.42 60.34 60.22 60.79 29.82 70.57 34.51 64.73 36.63 32.84 62.64 34.07 39.27 28.46 30.27 69.04 25.42 53.13 28.00 38.79 32.04 38.58 18.51 57.62 20.80 -0.917 2.18 0.808 -5 -7.52 -17.5 7.55 -10.2 11.5 -21.7 2.23 0.909 -7.49 19.7 4.75 -10.3 11.9 10.8 -4.14 -8.63 -6.32 -13.4 -3.89 -5.4 -1.42 19.6 32 2,5 19,5 24 4,5 2,5 8,5 18 8,5 14 11 21 10 7 12,5 12,5 16 19,5 4,5 26 6 22 16 27 23 25 1 16 15 18 16 11 7 2 21 5 23 1 19 17 8 26 20 4 24 22 12 6 9 3 13 10 14 25 27 -15 -18 8 -11 -7 -2 -3 -5 -9 10 2 -7 -1 -26 -20 12 -24 -22 14 0 13 13 14 13 11 -24 -11 225 324 64 121 49 4 9 25 81 100 4 49 1 676 400 144 576 484 196 0 169 169 196 169 121 576 121 rang xi rang ei Di Di2 21.3 69.2 77.9 17.1 18.4 37.9 72.2 27.5 58.2 46.2 74 43.5 18.8 59.5 52.2 65.1 60.2 2.63 84 19.8 78.7 62 104 69.3 78.9 15.1 51.5 84.98 30.58 38.42 60.34 60.22 60.79 29.82 70.57 34.51 64.73 36.63 32.84 62.64 34.07 39.27 28.46 30.27 69.04 25.42 53.13 28.00 38.79 32.04 38.58 18.51 57.62 20.80 -0.917 2.18 0.808 -5 -7.52 -17.5 7.55 -10.2 11.5 -21.7 2.23 0.909 -7.49 19.7 4.75 -10.3 11.9 10.8 -4.14 -8.63 -6.32 -13.4 -3.89 -5.4 -1.42 19.6 32 21 10 5 25 22,5 20 2,5 26 11 15 4 16 24 6,5 13 2,5 18 27 6,5 22,5 1 8 14 12 9 17 19 15 18 16 11 7 2 21 5 23 1 19 17 8 26 20 4 24 22 12 6 9 3 13 10 14 25 27 6 -8 -11 14 -7 18 -21 21 -12 14 -15 -1 16 -26 -7 -4 -6 5 -12 -6 -8 5 1 2 -5 -8 -8 36 64 121 196 49 324 441 441 144 196 225 1 256 676 49 16 36 25 144 36 64 25 1 4 25 64 64 Если явление гетероскедастичности наблюдается, то оценки, полученные с помощью МНК, являются смещенными и состоятельными. В этом случае следует использовать ОМНК для построения коэффициентов регрессии: bомнк=(ΧТΩˉ¹X)ˉ¹X ТΩˉ¹Y, где Ω - диагональная матрица, которую необходимо оценить. Тогда оценка регрессии будет иметь вид:Ŷ=Xbомнк. Проверка на значимость уравнения регрессии осуществляется с помощью статистики , распределенной по закону Фишера -Снедокера. FН= , (1)
- средние квадратические отклонения случайных величин
и
(2)
- центральный смешанный момент второго порядка, коэффициент ковариации i- й и j-й компонент вектора
при
, где Х матрица исходных данных размерности 53*6
, т.е.
, где n = 53 – объем выборки.
:
рассчитываем центрированную матрицу (Приложение 2)
=
на множитель
(где k=1)
достигнет своего максимума.
(где k=1)
достигнет своего максимума.
(где k=1)
достигнет своего максимума.
меньше таких коэффициентов для уравнений регрессии с двумя переменными.
около 1, то можно считать , что связь тесная.
tкритическое =2.064
коэффициент значим.
коэффициент значим
> tкритическое =2.064,
< tкритическое ,
остаточная дисперсия
Доверительный интервал для результативного признака будем строить , исходя из формулы:
,
и
, используя пакет STADIA ,находим:
Исследование модели на наличие гетероскедастичности
Rх.е ,
-коэффициент ранговой корреляции Спирмена, где Di2= rang xi- rang ei .
Проверим наличие гетероскедастичности по переменной Х7
Приведем график зависимости регрессионных остатков
от изменения признака Х7.
По оси ординат (У) отражено значение остатков , по оси абсцисс (х) значение признака. Как видно визуально гетероскедастичность отсутствует.
Ранговый коэффициент корреляции будет Rx,e= 0,0681, t=
Rх.е =-0,3472 0,3472<1.96 , следовательно согласно критерию гетероскедастичность линейного вида отсутствует.
Проверим наличие гетероскедастичности по переменной Х9
Приведем график зависимости регрессионных остатков
от изменения признака Х9.
По оси ординат (У) отражено значение остатков , по оси абсцисс (х) значение признака. Как видно визуально гетероскедастичность отсутствует.
Ранговый коэффициент корреляции будет Rx,e= -0,1364, t=
Rх.е =-0,6955 0,6955<1.96 , следовательно согласно критерию гетероскедастичность линейного вида отсутствует.
Устранение гетероскедастичности обобщенным методом наименьших квадратов.
, где QR=(Xb)ТΩ-1(Хb) , Qост=(У-Хb)ТΩ-1(У-Хb)
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.