166341 (582611)
Текст из файла
Основы теории и основные понятия процесса хроматографического разделения
Процесс хроматографического разделения очень сложен, тем не менее, его отдельные стадии могут быть смоделированы и представлены в виде уравнений, достаточно точно и верно отражающих реальный процесс. Без знания того, что такое удерживание, эффективность, селективность, нагрузочная емкость, невозможно подойти к решению практических задач по ВЭЖХ, постоянно возникающих перед исследователем независимо от того, в какой области он работает.
1.1 ЭФФЕКТИВНОСТЬ И СЕЛЕКТИВНОСТЬ
Хроматография — это метод разделения компонентов смеси, основанный на различии в равновесном распределении их между двумя несмешивающимися фазами, одна из которых неподвижна, а другая подвижна. Компоненты образца движутся по колонке, когда они находятся в подвижной фазе, и остаются на месте, когда находятся в неподвижной фазе. Чем больше сродство компонента к неподвижной фазе и чем меньше — к подвижной, тем медленнее он движется по колонке и тем дольше в ней удерживается. За счет различия в сродстве компонентов смеси к неподвижной и подвижной фазам достигается основная цель хроматографии — разделение за приемлемый промежуток времени смеси на отдельные полосы (пики) компонентов по мере их продвижения по колонке с подвижной фазой.
Из этих общих представлений ясно, что хроматографическое разделение возможно только в том случае, если компоненты образца, попадая в колонку при вводе пробы, во-первых, будут растворены в подвижной фазе и, во-вторых, будут взаимодействовать (удерживаться) с неподвижной фазой. Если при вводе пробы какие-то компоненты находятся не в виде раствора, они будут отфильтрованы и не будут участвовать в хроматографическом процессе. Точно так же компоненты, не взаимодействующие с неподвижной фазой, пройдут через колонку с подвижной фазой, не разделяясь на компоненты.
Примем условие, что какие-то два компонента растворимы в подвижной фазе и взаимодействуют с неподвижной фазой, т.е. хроматографический процесс может протекать без нарушений. В этом случае после прохождения смеси через колонку можно получить хроматограммы вида а, б или в (рис. 1.1). Эти хроматограммы иллюстрируют хроматографические разделения, отличающиеся эффективностью (а и б) при равной селективности и селективностью (б и в) при равной эффективности.
Эффективность колонки тем выше, чем уже пик получается при том же времени удерживания. Эффективность колонки измеряется числом теоретических тарелок (ЧТТ) N: чем выше эффективность, тем больше ЧТТ, тем меньше расширение пика
Рис. 1.1. Вид хроматограммы в зависимости от эффективности и селективности колонки: а — обычная селективность, пониженная эффективность (меньше теоретических тарелок), б — обычные селективность и эффек-тивность; в — обычная эффективность, повышенная селективность (больше отношение времен удерживания компонентов)
Рис. 1.2. Параметры хроматографического пика и расчет числа теоретических тарелок:
tR — время удерживания пика; h — высота пика; W1/2 — ширина пика на половине его высоты
первоначально узкой полосы по мере прохождения ее через колонку, тем уже шик на выходе из колонки. ЧТТ характеризует число ступеней установления равновесия между подвижной и неподвижной фазами. ЧТТ легко определить по хроматограмме (рис. 1.2) последующей формуле:
N = 5,54(tR / W1/2)2
Зная число теоретических тарелок, приходящееся на колонку, и длину колонки L (мкм), а также средний диаметр зерна сорбента dc (мкм), легко получить значения высоты, эквивалентной теоретической тарелке (ВЭТТ), а также приведенной высоты, эквивалентной теоретической тарелке (ПВЭТТ):
ВЭТТ = L / N ПВЭТТ = BЭTT / dс
Имея значения ЧТТ, ВЭТТ и ПВЭТТ, можно легко сравнивать эффективность колонок разных типов, разной длины, заполненных разными по природе и зернению сорбентами. Сравнивая ЧТТ двух колонок одной длины, сравнивают их эффективность. При сравнении ВЭТТ сравнивают колонки с сорбентами одинакового зернения, имеющими разную длину. Наконец, величина ПВЭТТ позволяет для двух любых колонок оценить качество сорбента, во-первых, и качество заполнения колонок, во-вторых, независимо от длины колонок, зернения сорбента и его природы.
Селективность колонки играет большую роль в достижении хромато-графического разделения. Селективность колонки α определяется отношением приведенных времен удерживания двух пиков по следующему уравнению:
α = (tR2-t0) / (tR1-t0)
где t0 - время удерживания несорбируемого компонента; tR1 и tR2 - времена удерживания компонентов 1 и 2.
Селективность колонки зависит от очень многих факторов, и искусство экспериментатора в большой мере определяется умением воздействовать на селективность разделения. Для этого в руках хроматографиста находятся три очень важных фактора: выбор химической природы сорбента, выбор состава растворителя и его модификаторов и учет химической структуры и свойств разделяемых компонентов. Иногда заметное влияние на селективность оказывает изменение температуры колонки, меняющее коэффициенты распределения веществ между подвижной и неподвижной фазами.
При рассмотрении разделения двух компонентов на хроматограмме и его оценке важным параметром является разрешение Rs, которое связывает времена выхода и ширину пиков обоих разделяемых компонентов (рис. 1.3):
RS = 2 (tR2- tR1) / (W1+W2)
Разрешение как параметр, характеризующий разделение пиков, увеличивается по мере возрастания селективности, отражаемой ростом числителя, и роста эффективности, отражаемой снижением значения знаменателя из-за уменьшения ширины пиков. Поэтому быстрый прогресс жидкостной хроматографии привел к изменению понятия «жидкостная хроматография высокого давления» — оно было заменено на «жидкостную хроматографию высокого разрешения» (при этом сокращенная запись термина на английском языке сохранилась HPLC как наиболее правильно характеризующее направление развития современной жидкостной хроматографии). Сокращение, принятое в отечественной литературе, — ВЭЖХ, расшифровываемое как «высокоэффектиная жидкостная хроматография», для современной жидкостной хроматографии несколько менее удачно, так как не учитывается важнейший фактор разделения — селективность.
Рис. 1.2. Разрешение пиков и параметры удерживания
Важным параметром удерживания в жидкостной хроматографии является коэффициент емкости k’, определяемый как частное от деления массы вещества в неподвижной фазе на массу вещества в подвижной фазе:
k’ = mн / mп
Важное уравнение в жидкостной хроматографии, связывающее основные хроматографические параметры разделения следующее:
RS = ј [(a- 1) /a][k2’ / (1 + k2’)]VN2
Разрешение, таким образом, определяется произведением трехсомножителей, первый из которых выражает зависимость от селективности колонки, второй — от коэффициента емкости колонки и третий — от эффективности колонки (ЧТТ).
Рассмотрим это важнейшее уравнение более подробно. Если, α=1, то разрешение равно 0, т.е. разделения нет независима от числа теоретических тарелок в колонке. Однако из характера функции α в уравнении видно, что небольшие изменения могут привести к заметному увеличению разрешения, особенно для тех случаев, когда значения α близки к 1. Если за счет подбора условий разделения удается изменить α с 1,1 до 1,2, это приводит к улучшению разрешения в два раза. Таким образом, на фактор селективности следует обращать основное внимание при подборе условий разделения, учитывая различие во взаимодействии разделяемых компонентов как в неподвижной, так и в подвижной фазе. В отличие от газовой хроматографии, в которой взаимодействия в подвижной (газовой) фазе незначительны и селективность системы в основном определяется только взаимодействиями веществ с неподвижной фазой, в жидкостной хроматографии подвижная (жидкая) фаза не является инертной, а может играть главную роль в процессе термодинамического распределения между неподвижной и подвижной фазами вследствие селективного взаимодействия разделяемых веществ с подвижной фазой. Поэтому в выборе условий для высокоселективного разделения как выбор сорбента, так и выбор растворителя играют одинаково важную роль, а искусство хроматографиста в ВЭЖХ более многогранно и требует учета большего числа взаимодействий между молекулами, чем в ГХ.
Второй сомножитель в уравнении принимает значение, равное 0 (при этом разрешение также равно 0, т.е. разделение отсутствует) в том случае, когда коэффициент емкости для второго компонента равен 0, т.е. оба разделяемых компонента элюируются как несорбируемые вещества (взаимодействие с неподвижной фазой отсутствует). С ростом значения k' разрешение увеличивается, при этом скорость анализа падает.
Наконец, из третьего сомножителя видно, что достигаемое разрешение пропорционально корню квадратному из числа теоретических тарелок, т.е. для увеличения разрешения вдвое нужно увеличить эффективность колонки в 4 раза (например, использовать колонку в 4 раза длиннее). Удлинение колонки в 4 раза приводит к увеличению продолжительности анализа также вчетверо, т. е. скорость анализа падает. Как правило, если эффективность колонки недостаточна, а скорость анализа является важным фактором, идут по другому пути для повышения эффективности — используют колонку с более мелким по зернению сорбентом. Однако в этом случае платой за большую эффективность при той же скорости анализа является повышение давления на колонке.
Следует отметить, что, хотя из уравнения и очевидно, что эффективность колонки меньше влияет на разрешение, чем ее селективность и коэффициент емкости, так как разрешение пропорционально корню квадратному из эффективности, тем не менее повышению эффективности колонок придается большое значение и уделяется огромное внимание как производителями колонок, так и их потребителями. Это связано с тем, что для сложных многокомпонентных смесей, особенно смесей неизвестного состава, часто не удается подобрать условия так, чтобы селективность была высокой для всех компонентов. В этом случае высокая эффективность колонки позволяет добиться разделения для пар веществ с небольшим значением α.
1.2 РАЗМЫВАНИЕ В КОЛОНКЕ И ВНЕ ЕЕ
Вещества вводятся в колонку в виде узкой зоны, которая по мере ее движения с подвижной фазой по колонке становится все шире, т. е. размывается в результате диффузионных процессов. Мерой этого размывания в колонке является высота, эквивалентная теоретической тарелке (ВЭТТ). Установлено, что размывание полосы в хроматографической колонке обусловлено тремя причинами: наличием вихревой диффузии, молекулярной диффузии и сопротивления массопередаче. Общая ВЭТТ (H) колонки получается путем суммирования вкладов всех этих факторов, вызывающих размывание хроматографической зоны:
H = Hp + Hd + Hs + Hm,
где Нр — вклад в размывание вихревой диффузии; На — вклад в размывание молекулярной диффузии; Hs — вклад, связанный с сопротивлением массопередаче в неподвижной фазе; Нт — вклад, связанный с сопротивлением массопередаче в подвижной фазе.
Не вдаваясь в подробное рассмотрение этих вкладов в ВЭТТ, тем не менее следует заметить, что чем меньше каждое из четырех слагаемых, тем меньше будет и суммарное значение ВЭТТ и, следовательно, эффективнее колонка. Величина Нр пропорциональна диаметру частиц сорбента и уменьшается с улучшением равномерности заполнения
Рис. 1.4. Зависимость ВЭТТ от скорости подачи растворителя (V, мл/мин).
Вклад в размывание пика разных факторов колонки сорбентом. Величина Hd растет при использовании очень малых скоростей потока, при обычно используемых высоких скоростях Hd настолько мала, что ею можно пренебречь. Величина Нm уменьшается при ускорении процессов адсорбции — десорбции в неподвижной фазе, т. е. при использовании частиц малого размера и тонких пленок неподвижной фазы, при уменьшении скорости потока. Величина Нm уменьшается при уменьшении размера частиц (пропорционально квадрату диаметра частиц), более равномерном и плотном заполнении колонки сорбентом, менее вязком растворителе, меньших скоростях потока.
Если изобразить графически зависимость ВЭТТ от скорости подачи растворителя, то она будет иметь вид, изображенный на рис.1.4. На нем можно видеть и оценить вклад каждой из составляющих в значение ВЭТТ.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.