162623 (581981)

Файл №581981 162623 (Финансовая математика)162623 (581981)2016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

12



МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Кафедра «Финансы и кредит»

КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Финансовая математика»

Севастополь

2007

Цель контрольной работы:

  • изучить основные методы проведения финансовых расчетов на уровне предприятий, банковских учреждений, страховых организаций;

  • научиться рассчитывать параметры финансовых операций;

  • научиться проводить сравнительный анализ вариантов осуществления финансовых сделок.

Вариант №5

Задача 1

Вывести формулу для определения современной ценности р-срочной финансовой ренты с начислением процентов m раз в год.

Сумма членов геометрической прогрессии (P) определяется по формуле

,

где b1 - первый член геометрической прогрессии;

q - знаменатель прогрессии;

n - число членов прогрессии.

Если платежи производятся не один, а m раз в году, то размер платежа равен R/p. Члены ренты образуют ряд

.

Данный ряд представляет собой геометрическую прогрессию со знаменателем (1+j/m)-m/p, первым членом прогрессии и числом членов прогрессии nmp. Подставив данные в вышеуказанную формулу получаем сумму дисконтированных платежей или современную стоимость (Р) p-срочной ренты:

Приведя последнее выражение к общему знаменателю, и упростив его, получим формулу для расчета современной ценности р-срочной финансовой ренты с начислением процентов m раз в год:


Задача 2

Клиент внес в банк 14 000 д.ед. на срок с 14 февраля по 23 июля. На вклады «до востребования» сроком больше месяца банк начисляет 24 % простых годовых. Определите наращенную сумму при расчете по: а) точным процентам с точным числом дней; б) банковскому методу; в) обыкновенным процентам с приближенным числом дней. Год не високосный.

Решение:

Дано: Р = 14 000

срок c 14.02 по 23.07

i = 24 % (0,24)

Найти: S -?

Наращенная сумма вычисляется по формуле (декурсивный метод начисления простых процентов):

S = P + I,

где S – наращенная сумма или сумма задолженности, подлежащая погашению по окончании кредитного/депозитного договора, д.ед.;

Р – первоначальная сумма капитала или размер предоставленного кредита/депозита, д.ед.;

I –сумма процентов, начисленных за весь срок операции, д.ед.

Сумма начисленных процентов вычисляется по формуле

I = P * i * n,

где n - срок операции или период действия кредитного договора в годах;

i – простая процентная ставка для конверсионного периода, равного одному году, %.

Формула наращения по простым процентам

S = P + P*i*n = P*(1+i*n).

В случае, если n не равно целому количеству лет применяют формулу

S = P*(1+i*t/k),

где t – срок финансовой операции;

k – временная база (12 мес., 4 квартала, 360 /365 дней).

а) Определим наращенную сумму при расчете по точным процентам с точным числом дней в течение финансовой операции. Это Английская практика расчетов. В нашей задаче временная база k = 365 (год не високосный).

Посчитаем точное число дней в сроке с 14.02 (включая) по 23.07 (не включая).

t = 15 + 31 + 30 + 31 + 30 + 22 = 159 (дней)

Тогда S = 14 000 * (1+ 0,24 * 159 / 365) = 15 463,67 (д.ед.)

б) Определим наращенную сумму при расчете по банковскому методу, или обыкновенные % с точным числом дней в течение финансовой операции. Это Французская практика расчетов. Временная база k = 360 дней. Точное число дней рассчитывается аналогично первому варианту и равно t = 159 (дн.)

Тогда S = 14 000 * (1+ 0,24 * 159 / 360) = 15 483,99 (д.ед.)

в) Определим наращенную сумму при расчете по обыкновенным процентам с приближенным числом дней в течение финансовой операции.

Временная база k = 360 дней. Расчет числа дней операции производится исходя из предположения, что в каждом месяце 30 дней.

t = (14,15,16,…30) + 30 +30 + 30 + 30 + 22 = 159 (дней)

Тогда S = 14 000 * (1+ 0,24 * 159 / 360) = 15 483,99 (д.ед.)

Ответ: а) 15 463,67 д.ед.; б) 15 483,99 д.ед.; в) 15 483,99 д. ед.

Задача 3

Какой должна быть минимальная процентная ставка, чтобы произошло удвоение вклада за год при начислении процентов: а) поквартально, б) ежемесячно.

Решение:

Дано: Р

S = 2 P

m = 4, 12

Найти: j - ?

Наращение по сложным процентам вычисляется по формуле (декурсивный метод начисления по сложным процентам):

Sn = P* (1+ i)n ,

где Sn – наращенная сумма на конец n - го года, д.ед.;

P – первоначальная сумма денежных средств, д.ед.;

i - ставка сложных процентов, %;

n – срок операции наращения в годах;

(1+i)n - множитель наращения сложных процентов.

В случае если проценты начисляются чаще одного раза в год, то применяют формулу

S = P * ( 1 + j / m )mn

где j – годовая процентная ставка (номинальная), %;

m - число периодов капитализации процентов в течение года.

По условию задачи должно произойти удвоение вклада, т.е. S = 2 P,

тогда формула начисления процентов имеет вид:

2 P = P * ( 1 + j / m )mn, отсюда

j = m * ( mn 2P/ P – 1)

а) Проценты начисляются поквартально, т.е. m = 4, тогда

j = 4 * ( 4*1 2P/ P – 1) = 4 * ( 4 2 – 1) = 4 * (1,189 – 1) = 0,76 (%)

б) Проценты начисляются ежемесячно, т.е. m = 12, тогда

j = 12 * ( 12*1 2P/ P – 1) = 12 * (12 2 – 1) = 12 * (1,06 – 1) = 0,72 (%)

Ответ: j = 0,76%; 0,72 %

Задача 4

Покупатель обязался уплатить фермеру за купленное у него зерно 3 500 000 д.ед. через 2 месяца после покупки, 3 000 000 - ещё через 2 месяца и 5 200 000 - ещё через 3 месяца. Стороны договорились объединить эти платежи в один и выплатить его через 5 месяцев после покупки. Чему равен этот платёж, если на деньги начисляется 8 % годовых?

Решение:

Дано:

3 500 тыс. 3 000 тыс. А0 -? 5 200 тыс.

* * * * *

0 2 мес. 4 мес. 5 мес. 7 мес.

60 дн. 120 дн. 150 дн. 210 дн.

n0

i = 8% годовых

Найти: А0 - ?

Если в задаче не указано, то количество дней в году принимаем - 360 и количество дней в каждом месяце будет - 30. (Применим немецкую практику расчета).

Для решения данной задачи используется уравнение эквивалентности, в котором сумма платежей по первоначальным условиям приводится к выбранному моменту времени и приравнивается к сумме платежей по новым условиям по этому же моменту времени.

В нашем случае совокупность платежей заменяется одним новым платежом и если известен срок объединенного платежа, то нахождение суммы объединенного платежа при известном сроке и начислении простых процентов вычисляется по формуле:


где Аj – суммы объединенных платежей, сроки выплат которых меньше нового срока, (nj < n0 ), д.ед.;

tj – разница между сроком выплаты объединенного платежа и сроком выплаты каждого объединенного платежа (tj = n0 - nj), дни;

Аk – суммы объединенных платежей со сроками, превышающими срок объединенного платежа (nk > n0), д.ед.;

tk – период времени между сроком погашения по первоначальным условиям контракта и сроком погашения по новым условиям контракта (tk = nk-n0), дни.

Тогда, подставив заданные значения получаем:

А0 = 3 500 000*(1+0,08*(150-60)/360) + 3 000 000*(1+0,08*(150-

120)/360) + 5 200 000*(1+0,08*(210-150)/360)-1 = 3 500 000*1,02 +

3 000 000*1,01 + 5 200 000*1,01-1 = 11 748 514,85

Ответ: Новый платеж через пять месяцев равен 11 748 514,85 д.ед.

Задача 5

Пенсионер вкладывает в начале каждого месяца в банк по 50 д.ед. под 60 % годовых. Определите, через какое время он накопит сумму, достаточную для покупки холодильника стоимостью 3000 д.ед. Проценты начисляются ежемесячно.

Решение:

Дано: R/р = 50 д.ед.

i = 0,6 %

S = 3 000 д.ед.

р= m = 12

Найти: n - ?

Пусть рента выплачивается p = m = 12 раз в году равными суммами, процент начисляется ежемесячно по условию задачи. Если годовая сумма платежей равна R, то каждый раз выплачивается R/p. Члены ренты образуют ряд

Данный ряд представляет собой геометрическую прогрессию со знаменателем (1+i)m/p, первым членом прогрессии R/p и числом членов прогрессии nmp.

Расчет наращенной суммы (S) p-срочной ренты производится по формуле:

где R/p - элемент (член) p-срочной ренты, д.ед.;

p - количество платежей за год;

Из этой формулы находим n и подставим наши данные:

Ответ: n = 2,3 года, или необходимую сумму в 3 000 д.ед. можно накопить в течение 2 лет 3 месяцев, если ежемесячно вносить в банк 50 д.ед. под 60 % годовых.

Задача 6

Какую сумму надо положить в банк, чтобы в течение следующих 26 лет иметь возможность снимать со счёта каждые два года по 1000 д.ед., исчерпав весь счёт к концу этого срока, если банк начисляет на деньги, находящиеся на счёте, 10 % годовых?

Решение:

Дано: R = 1 000 д.ед.

i = 0,1 %

n = 26 лет

r = 2 года

Найти: P - ?

Современная стоимость (Р) финансовой ренты с периодом больше года (r-срочная рента) определяется по формуле

,

где R – элемент (член) r- срочной ренты, д.ед.

r – периодичность осуществления платежей

Подставив все заданные в задаче данные в формулу можем рассчитать современную стоимость финансовой ренты:

Ответ: В банк нужно положить 4361,9 д.ед.

Характеристики

Тип файла
Документ
Размер
321,99 Kb
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6521
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее