151144 (580542), страница 3
Текст из файла (страница 3)
SВС=299,44 BּA, PBС=-259,32 Вт, QAB=149,72 вар;
ВּА,
где
SCA=360,24 BּA, PCA=-337,43 Вт, QAB=-126,16 вар;
где
S=236,89 BּA, P=82,14 Вт, QAB=-222,19 вар.
6) Строим в масштабе векторную диаграмму напряжений и токов.
Векторы фазных токов ,
,
строятся под углами ψAB, ψBC, ψCA к действительной оси. К концам векторов
,
,
пристраиваются отрицательные фазные токи согласно уравнениям:
,
,
.
Замыкающие векторные треугольники векторов ,
,
представляют в выбранном масштабе линейные токи.
Выбираем масштаб: MI=3 А/см.
см;
см;
см.
рис 2.5
2.3 Исследование переходных процессов в электрических цепях, содержащих конденсатор и сопротивление
Цепь с последовательно включенными конденсатором емкостью С = 50 мкФ и сопротивлением R = 10 КОм подсоединяется к источнику постоянного напряжения U = 50 В (переключатель в положении 1). Определить законы изменения переходных напряжений и тока при заряде конденсатора и построить их графики. Затем цепь отключается от источника и одновременно переключатель переводится в положение 2. Определить законы изменения переходных напряжений и тока при разряде конденсатора и построить их графики. Определить фактическую длительность заряда и разряда конденсатора и энергию электрического поля при 1 = Зτ. Схема цепи приведена на рис. 2.6.
Дано:
С = 50 мкФ,
R = 10 КОм,
U = 50 В.
Определить: i=f(t),t; uc=f(t),W.
рис 2.6
1) Переключатель в положении 1 (заряд конденсатора)
τ =RּC=104ּ50ּ16-6=0,5c
На основании второго закона коммутации получены законы, характеризующие напряжение и ток при заряде конденсатора.
где U – напряжение источника
uуст=U – установившееся значение напряжения при заряде конденсатора
– свободная составляющая напряжения при заряде конденсатора.
Зарядный ток равен свободной составляющей, т.к. ток установившегося режима равен 0(iуст=0).
Длительность заряда конденсатора:
t=5τ=5ּ0,5=2,5 с.
Вычисляем значение напряжения на конденсаторе при его заряде для значений времени t=0, τ, 2τ, 3τ, 4τ, 5τ.
t=0, В;
t=τ, B;
t=2τ, B;
t=3τ, B;
t=4τ, B;
t=5τ, B.
Аналогично вычисляем значения зарядного тока согласно закону изменения переходного тока при заряде конденсатора для значений времени t=0, τ, 2τ, 3τ, 4τ, 5τ.
t, c | 0 | τ | 2τ | 3τ | 4τ | 5τ |
i, мкА | 25 | 9,19 | 3,38 | 1,24 | 0,46 | 0,17 |
Согласно полученным результатам строим графики зарядного напряжения и тока в зависимости от τ. (рис 2.7)
рис 2.7
Из построенных графиков u(t) и i(t) можно для любого момента времени определить значение u и i, а также рассчитать запасенную энергию в электрическом поле заряженного конденсатора.
Например, при t=3τ:
Дж.
2) Переключатель в положении 2 (разряд конденсатора).
Быстрота разряда конденсатора также зависит от параметров цепи и характеризуется постоянной времени, разряда конденсатора:
τ =RC=104ּ50ּ10-6=0,5 с
На основании второго закона коммутации получены законы, характеризующие напряжение и ток при разряде конденсатора:
где U – напряжение заряженного конденсатора до начала разряда.
Разрядные напряжения и ток равны их свободным составляющим, т.к. напряжение и ток установившегося режима после разряда равны 0 (uc уст=0, iуст=0).
Длительность разряда конденсатора:
t=5τ=0,5ּ5=2,5 с.
Вычисляем значения напряжения конденсатора при его разряде для, значений времени t=0, τ, 2τ, 3τ, 4τ, 5τ.
t=0, В;
t=τ, B;
t=2τ, B;
t=3τ, B;
t=4τ, B;
t=5τ, B.
Аналогично вычисляем значения разрядного тока согласно закону изменения переходного тока при разряде конденсатора для тех же значений времени.
А.
Знак "-" говорит о том, что разрядный ток имеет обратное направление зарядному.
t=0, мкА;
t=τ, мкА;
t=2τ, мкА;
t=3τ, мкА;
t=4τ, мкА;
t=5τ, мкА.
Согласно полученным расчетам строим графики разрядного напряжения и тока в зависимости от τ (рис 2.8).
рис 2.8
Энергия электрического поля конденсатора в момент времени t=3τ:
Дж.
Литература
-
Галицкая Л.Н. "Теоретические основы электротехники. Курсовое проектирование" – Минск 1997г.
-
Попов В.С. "Теоретическая электротехника" - Москва 1990г.
-
Евдокимов Ф.Е. "Теоретические основы электротехники". Издательство "Высшая школа" - Москва 2002г.
-
Вычисляем токи ветвей исходной цепи, выполняя алгебраическое сложение частных токов, учитывая их направления.