86326 (575059), страница 2

Файл №575059 86326 (Вычисление вероятности) 2 страница86326 (575059) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

.

Полученные значения запишем в таблицу

1

0,03

0,497

0,467

34

0,34

0,73

2

0,497

0,964

0,467

27

0,27

0,58

3

0,964

1,431

0,467

15

0,15

0,32

4

1,431

1,898

0,467

10

0,1

0,21

5

1,898

2,365

0,467

6

0,06

0,13

6

2,365

2,832

0,467

3

0,03

0,06

7

2,832

3,299

0,467

2

0,02

0,04

8

3,299

3,766

0,467

1

0,01

0,02

9

3,766

4,233

0,467

1

0,01

0,02

10

4,233

4,7

0,467

1

0,01

0,02

Равноинтервальная гистограмма имеет вид:

Построим гистограмму равновероятностным способом.

1

0,03

0,17

0,14

10

0,1

0,7143

2

0,17

0,25

0,08

10

0,1

1,2500

3

0,25

0,42

0,17

10

0,1

0,5882

4

0,42

0,57

0,15

10

0,1

0,6667

5

0,57

0,77

0,2

10

0,1

0,5000

6

0,77

0,96

0,19

10

0,1

0,5263

7

0,96

1,27

0,31

10

0,1

0,3226

8

1,27

1,53

0,26

10

0,1

0,3846

9

1,53

2,17

0,64

10

0,1

0,1563

10

2,17

4,7

2,53

10

0,1

0,0395

Равновероятностная гистограмма имеет вид:

Оценку математического ожидания вычислим по формуле

1,00.

Оценку дисперсии вычислим по формуле:

, 0,82,

Построим доверительный интервал для математического ожидания при неизвестной дисперсии:

В нашем случае

1,00, 0,82, , , .

;

Доверительный интервал для математического ожидания .

Доверительный интервал для дисперсии

, =1,96 ( ).

По виду равноинтервальной гистограммы выдвигаем гипотезу о том, что случайная величина X распределена по показательному закону:

H0 :

H1 :

Определим оценку неизвестного параметра

Предполагаемый закон распределения . Найдем вероятности попадания в каждый из интервалов

Теоретические частоты найдем по формуле

Интервалы

[xi; xi+1)

1

0,03

0,497

0,36

36,00

-2,00

4,00

0,1111

2

0,497

0,964

0,23

23,00

4,00

16,00

0,6957

3

0,964

1,431

0,14

14,00

1,00

1,00

0,0714

4

1,431

1,898

0,09

9,00

1,00

1,00

0,1111

5

1,898

2,365

0,06

6,00

0,00

0,00

0,0000

6

2,365

2,832

0,04

4,00

-1,00

1,00

0,2500

7

2,832

3,299

0,02

2,00

0,00

0,00

0,0000

8

3,299

3,766

0,01

1,00

0,00

0,00

0,0000

9

3,766

4,233

0,01

1,00

0,00

0,00

0,0000

10

4,233

4,7

0,01

1,00

0,00

0,00

0,0000

НАБЛ=

1,24

Число степеней свободы определяют по формуле . По таблице критерия Пирсона находим: . Так как , то нет оснований отвергать гипотезу о показательном распределении. Проверим гипотезу о показательном распределении с помощью -критерия Колмогорова. Теоретическая функция распределения F0(x) показательного закона равна

Проверим гипотезу о нормальном распределении с помощью -критерия Колмогорова. Все вспомогательные расчеты сведем в таблицу.

Интервалы

[xi; xi+1)

частота в интервале

1

-2,951

7

34

0,34

0,36

0,02

2

-2,513

10

27

0,61

0,59

0,02

3

-2,075

8

15

0,76

0,73

0,03

4

-1,637

12

10

0,86

0,82

0,04

5

-1,199

14

6

0,92

0,88

0,04

6

-0,761

11

3

0,95

0,91

0,04

7

-0,323

9

2

0,97

0,93

0,04

8

0,115

4

1

0,98

0,95

0,03

9

0,553

16

1

0,99

0,96

0,03

10

0,991

9

1

1,00

0,97

0,03

; .

То таблице квантилей распределения Колмогорова по уровню значимости находим критическое значение .

Так как , то нет оснований отвергать гипотезу о нормальном распределении.

Характеристики

Тип файла
Документ
Размер
8,15 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6590
Авторов
на СтудИзбе
297
Средний доход
с одного платного файла
Обучение Подробнее