85933 (574946)

Файл №574946 85933 (Полурешетки m-степеней)85933 (574946)2016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Содержани


Введение

Теоретическая часть

§1 Основные определения

§2 Простейшие свойства m – степеней

§3 Минимальные элементы верхней полурешетки m-степеней

2. Практическая часть

§1. Идеалы полурешетки m-степеней частично рекурсивных функций

Литература


Введение

Сейчас много внимания уделяется вопросам сводимости функций. Данная работа посвящена одной из разновидностей сводимости частично рекурсивной функции, а именно m-сводимости.

Для дальнейшего рассмотрения этого вопроса будем пользоваться общепринятыми понятиями и теоретико-множественными обозначениями.

Символы логических операций: отрицания, конъюнкции, дизъюнкции, импликации, и эквивалентности будем обозначать: , соответственно.

Кванторы общности и существования обозначают соответственно.

Совокупность всех целых неотрицательных чисел обозначим через N.

Под множеством будем понимать подмножество N.

Латинскими буквами A,B,C,… будем обозначать множества.

Объединение множества A и B обозначим через пересечения этих множеств - а разность , дополнение - .

Пусть 1* 2*…* n 1, 2,…, n 1 1, 2 2,…, n n -декартово произведение множеств 1, 2,…, n.

Определение: Функции называется арифметической, если ее аргументы пробегают натуральный ряд N, и сама функция принимает лишь натуральные значения.

Под n-местной частичной арифметической функцией будем понимать функцию, отображающую некоторое множество в N ,где -n-ая декартовая степень множества N.

Греческими строчными буквами будем обозначать частично рекурсивные функции (ЧРФ) : .

Всякий раз, когда число аргументов явно не указывается, речь идет об одноместных функциях. Обозначим через множество всех одноместных ЧРФ.

Запись означает, что функция для этой n-ки не определена, а запись означает, что функция для этой n-ки определена.

Множество называют областью значений функции , а множество область определения функции .

Определение: Частичную n-местную функцию назовем всюду определенной, если .

Всюду определенная функция будет обозначаться латинскими буквами: f,g,h,… . [5,6]

Теоретическая часть


§1 Основные определения

Определение 1: (интуитивное).

Арифметическая функция называется частично рекурсивной, если существует алгоритм для нахождения ее значений.

Определение 2:

Под начальными функциями будем понимать следующие функции:

  1. функция следования S ;

  2. функции выбора

,

  1. нулевая функция .

Определение 3: (оператор суперпозиции (подстановка)).

Говорят, что функция получена суперпозицией из функций и , если для всех значений выполняется равенство:

Определение 4: (оператор примитивной рекурсии ).

Говорят, что функция получена из двух функций и с помощью оператора примитивной рекурсии, если имеют место следующие равенства:

.

Это определение применимо и при n=0. Говорят, что функция получена из одноместной функции константы равной и функции , если при всех :

Определение 5: ( -оператор или оператор минимизации).

Определим -оператор сначала для одноместных функций.

Будем говорить, что функция получена из частичной функции с помощью оператора, если,

.

В этом случае -оператор называется оператором обращения и -наименьшее .

Теперь определим -оператор в общем виде:

Определение 6:

Функция называется частично рекурсивной функцией (ЧРФ) ,если она может быть получена из начальных функций с помощью конечного числа применений трех операторов: суперпозиции, примитивной рекурсии, -оператора.

Определение 7:

Если - ЧРФ и всюду определена, то она называется рекурсивной функцией.

Определение 8:

Множество - рекурсивно перечислимо (РП), в интуитивном смысле, если существует эффективная процедура, которая выписывает элементы этого множества. Каждый элемент на некотором шаге будет выписан.

Определение 9:

Характеристической функцией множества называется функция

Определение 10:

Множество называется рекурсивным, если характеристическая функция является рекурсивной.

Определение 11:

Функция m-сводима к функции ( ), в точности тогда, когда существует рекурсивная функция , такая, что

Функция называется сводящей функцией.

Введем отношение m-эквивалентности на множестве .

Определение 12:

Введем понятие m-степени функции .

Определение 13:

Введем понятие m-сводимости множеств.

Определение 14:

Множество m-сводимо к множеству (обозначение ), если существует рекурсивная функция такая, что В этом случае говорят, что m-сводимо к посредством .

Аналогично вводится понятие m-степени множества .

Определение 15:

Частичная характеристическая функция для множества -функция

Определение 16:

ЧРФ – универсальная для множества , если ( -рекурсивная функция ) где - ЧРФ с геделевым номером .

Определение 17:

Если на множестве определено бинарное отношение , удовлетворяющее условиям:

1. (рефлексивность);

2. (антисимметричность);

3. (транзитивность),

то множество называется частично упорядоченным, а отношение называется частичным порядком на . Отношение , удовлетворяющее только свойствам 1,3, называется предпорядком на . Если частичный порядок на удовлетворяет условию

4. то называется линейным порядком (или просто порядком), а -линейно упорядоченным множеством или цепью.

Определение 18:

Верхней (нижней) гранью подмножества называется такой элемент что ( ) для любого . Элемент называется max (min) элементом , если ( ) для всех

Если же ( ) для любых ? ,то элемент называется наибольшим (наименьшим).

Определение 19.

Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.

Определение 20.

Полурешеткой (точнее, верхней полурешеткой) назовем пару где - непустое множество, а -бинарная операция на , удовлетворяющая условиям: для любого

1.

2.

3.

Если - полурешетка, то зададим на частичный порядок следующим соотношением: для

Проверка того, что это частичный порядок, очевидна. Операция является для этого порядка операцией взятия точной верхней грани.

Определение 21:

Множество называется продуктивным, если существует рекурсивная функция , называемая продуктивной функцией для , такая, что

Ясно, что продуктивное множество не может быть р.п. Если бы то Ø, что невозможно.

Определение 22:

Множество называется креативным, если оно р.п. и продуктивно.

Заметим, что креативные множества по теореме Поста не могут быть рекурсивными. Примером креативного множества будет

Действительно

откуда рекурсивная функция является продуктивной функцией для .

Имеет место следующее утверждение: если В - р.п. множество, А -креативно, то - креативно. [1,5]

§2 Простейшие свойства m – степеней

Ведем отношение частного порядка на множестве m – степеней:

Обозначим через L частично упорядоченное множество m – степеней.

Утверждение 2.1: множество L является верхней полурешеткой.

Доказательство:

Рассмотрим , где

.

Докажем, что эта функция является точной верхней гранью для произвольных ЧРФ α и β.

Рассмотрим γ:

для рекурсивных функций g, f.

Определим функцию .

Проверим следующие равенства: .

Пусть x=2t, тогда и .

Пусть x=2t+1, тогда и .

Таким образом, равенство справедливо.

Следовательно, функция является точной верхней гранью для произвольных ЧРФ α и β, ч.т.д.

Утверждение 2.2: .

Доказательство:

: Пусть , тогда посредством рекурсивной функции f, которая множество А m – сводит к В.

: Аналогично , ч.т.д.

Следствие: существует изоморфное вложение полурешетки m-степеней рекурсивно перечисляемых множеств в полурешетку m-степеней частичных характеристических функций: .

Утверждение 2.3: .

Доказательство:

Если Ø, то утверждение справедливо.

Пусть Ø. Возьмем , откуда для некоторого ; а так как для некоторой рекурсивной функции f, то и .

Таким образом, , ч.т.д.

Следствие: функции, принадлежащие одной и той же m-степени, имеют одинаковую область значений.

Утверждение 2.4: Пусть f, g – рекурсивные функции, тогда .

Доказательство:

: Следует из следствия к 2.3.

: Пусть : покажем, что , то есть .

Строим таким образом: допустим , начинаем последовательно вычислять g(0), g(1), …, пока не получим, что g(n)=i, а такое n обязательно появится, так как .

Полагаем, что , тогда очевидно, что .

Аналогично строим функцию , такую, что . Отсюда получим, что .

Таким образом, так как и , ч.т.д. [1]

§3 Минимальные элементы верхней полурешетки m-степеней

Утверждение 3.1: Наименьшего элемента в L нет.

Характеристики

Тип файла
Документ
Размер
2,75 Mb
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6540
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее