86045 (566113), страница 2

Файл №566113 86045 (Методы оптимизации функций многих переменных) 2 страница86045 (566113) страница 22016-07-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

L (х*, λ*) =max {L (x*,λ) ׀ λ ≥0}, (13)

gi (x*) =0, i=1, 2,..., m, (14)

х*≥0,λ*≥0.

Условие (12) минимума функции Лагранжа по х эквивалентно выполнению в точке (х*, λ*) неравенства

≥0. (12′)

Условие (13) максимума функции Лагранжа по λ эквивалентно выполнению в точке (х*, λ*) неравенства

≤0. (13′)

Утверждение 2. х* - оптимальное решение задачи (3) в том и только в том случае, когда существует такой вектор λ* ≥0, что (х*, λ*) - седловая точка функции Лагранжа L (x,λ).

1.3 Решение задач квадратичного программирования методом седловой точки

Рассмотрим задачу квадратичного программирования, т.е.

f (x) = (Сx,x) + (d,x) min, (15), g (x) =Axb,

где С - матрица размера n*n; d, х - векторы-столбцы n*1; А - матрица размера m*n; b - вектор-столбец m*1. Для задачи квадратичного программирования критерий существования седловой точки приобретает вид задачи решения СЛАУ. Действительно, функция Лагранжа в этом случае запишется в виде

L = dkxk+ ckjxkxj+ λi ( aijxj-bi), (16)

где ckj - элементы матрицы С; dk - элементы вектора d; bi - элементы вектора свободных членов b; aij - элементы матрицы А; λi - коэффициенты Лагранжа. Необходимые и достаточные условия оптимальности решения х* принимают вид

vj dj+2 ckjxk+ λiaij, vj ≥0, (j=1,…,n), (17)

yi aijxj-bi, - yi ≤0, (i=1,...,m), (18)

xjvj=0, xj≥0, (j=1,...,n), (19)

λi (-yi) =0, λi≥0. (20)

Равенства (17), (18) образуют систему n+m линейных уравнений с 2 (n+m) неизвестными x1,…,xn,v1,…,vn, λ1,…, λm,y1,…,ym. Решения этой системы, при которых выполняются равенства (19), (20), дают координаты седловой точки (х*,λ*). Соответственно n координат х* дают оптимальное решение задачи (15).

2. Порядок выполнения лабораторной работы

Построить допустимую область задачи и линии уровня.

Записать функцию Лагранжа и необходимые условия экстремума, из которых аналитически или используя прикладные пакеты найти условно-стационарные точки.

Для каждой точки указать активные и пассивные ограничения. Проверить выполнение достаточных условий экстремума в найденных стационарных точках. Найти глобальный минимум функции. Используя критерий (утверждение 1), проверить, что найденная точка является седловой точкой функции Лагранжа.

Проверить справедливость оценки (9), решив задачу при положительных и отрицательных малых значениях приращения ∆b.

Решить задачу квадратичного программирования методом седловой точки. Для этого записать систему (17) - (18), найти ее решения, удовлетворяющие условиям (19) - (20).

3. Пример выполнения лабораторной работы

Минимизировать нелинейную функцию при условиях и , применяя метод функции Лагранжа. Проверить справедливость оценки изменения целевой функции (9).

Допустимая область - часть сферы , лежащая в подпространстве

, a= (1, 1,1).

Рассмотрим случай . Если при этом , то .

Из (21) - (23) , что противоречит (28).

Если , то (иначе получаем противоречия в (21) - (23)).

Из (21) - (23) . Подставим в (26): . Отсюда , что противоречит исходному предположению .

Рассмотрим теперь случай .

Если , то получаем точку (из (1′) … (3′), (7′)).

Остальные "симметричные" точки здесь и далее приводить не будем.

Если , , , то

,

,

.

Далее получаем точки

и . , .

Для значение

, для значение .

Если , , то

Если , то

и .

Следовательно, и . Однако, , значит, пришли к

противоречию.

Таким образом, .

Суммирование первых трех уравнений дает уравнение

,

в котором последнее слагаемое равно нулю, поэтому

.

С другой стороны,

и .

Следовательно, ,

откуда . Если , то .

Разделим равенства на : . Однако, если , то их произведение не может быть равно . Значит, . Если , получаем следующую систему:

.

Получаем точку

(в силу симметрии переменных х1, х2, х3 координаты можно переставить),

, .

Предположив , получим те же результаты.

Найдены следующие точки:

, , ;

, , , ;

, , , ;

, , , .

Запишем второй дифференциал обобщенной функции Лагранжа.

, , ;

.

является активным ограничением только для точки .

Применим достаточное условие минимума второго порядка к этой точке:

Подставив и во второй дифференциал функции Лагранжа, получим

.

Запишем матрицу квадратичной формы относительно приращений:

.

Для "верхнего" знака матрица

.

Для "нижнего" знака элементы матрицы меняют знак. Согласно критерию Сильвестра, в этой точке нет экстремума.

Сравним значения функции в остальных точках:

; ; .

Точкой глобального минимума является

,

значение функции в этой точке

-0, 192450. .

Проверим справедливость оценки для точки , .

Возьмем вектор , ему соответствуют множители Лагранжа

.

Следовательно,

.

Перепишем условие задачи, введя приращение :

;

.

И з первых трех уравнений получаем

и подставим в последнее уравнение:

, .

.

.

Возьмем, например,

.

С другой стороны,

.

Аналогично для

и .

Решить задачу максимизации квадратичной функции

при условиях 15 и 1,2,3.

Перепишем условие следующим образом:

Функция Лагранжа имеет вид

.

Необходимые и достаточные условия минимума:

, , ,

, , .

Получаем систему уравнений и неравенств:

Для решения промежуточной задачи ЛП воспользуемся средствами MS Excel. Введем формулы, соответствующие системе (рис.2), и начальное приближение для решения системы уравнений (рис.3).

Рис.2. Ввод данных задачи

Рис.3. Задание начального приближения

Заполним поля диалога "Поиск решения" (рис.4).

Рис.4. Экранная форма "Поиск решения"

В окне "Параметры" установим флажок "Неотрицательные значения".

В результате решения найдена седловая точка функции Лагранжа

(х*,λ*) = (15; 0; 0; 30) (рис.5).

Рис.5. Результаты поиска решения.

Оптимальное решение задачи: х* (15; 0; 0), f (x*) = 225.

4. Задания для лабораторного практикума

Решить задачу минимизации функции методом множителей Лагранжа.

Решить ЗНП методом седловой точки. Промежуточную задачу решения СЛАУ решить, используя EXCEL.

1. .

2. .

3. .

4. .

5. .

6. .

7. .

8. .

Ограничения (для всех вариантов):

.

Контрольные вопросы:

Активные и пассивные ограничения. Регулярная задача.

Теорема Куна-Такера.

Достаточные условия минимума в задачах математического программирования.

Седловая точка.

Метод седловой точки для задачи квадратичного программирования.


Библиографический список

  1. Стандарт предприятия: Общие требования и правила оформления дипломных и курсовых проектов (работ): СТП УГТУ - УПИ 1 - 96. Екатеринбург, 1996.

  2. Акулич И.Л. Математическое программирование в примерах и задачах / И.Л. Акулич. М.: Высшая школа, 1993.335 с.

  3. Аттетков А.В. Методы оптимизации / А.В. Аттетков, С.В. Галкин,

  4. В.С. Зарубин. М.: МГТУ, 2004.432 с.

  5. Васильев В.П. Численные методы решения экстремальных задач / В.П. Васильев. М.: Наука, 1980.518 с.

  6. Габасов Р. Методы оптимизации / Р. Габасов, Ф.М. Кириллова. Минск: БГУ, 1981.350 с.

  7. Дьяконов В. Matlab: учебный курс / В. Дьяконов. СПб.: Питер, 2001.560 с.

  8. Еремин И.И. / И.И. Еремин, Н.Н. Астафьев. М.: Наука, 1976.192 с.

  9. Пантелеев А.В. Методы оптимизации в примерах и задачах /

  10. А.В. Пантелеев, Т.А. Летова. М.: Высшая школа, 2005.544 с.

  11. МЕТОДЫ ОПТИМИЗАЦИИ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ: методические указания к лабораторным работам / сост. С.Д. Чернина. Екатеринбург: УГТУУПИ, 2007.36 с.


Приложение

Рекомендации по использованию EXCEL и MATLAB

Построение графиков

Для построения графика функции y=f (x1,x2) могут быть использованы следующие инструменты:

1. В EXCEL - Мастер диаграмм, подтип Поверхность.

а. Используя автозаполнение, на листе EXCEL в столбец А и первую строку с выбранным шагом ввести соответственно значения переменных x1 и x2, для которых будут вычисляться значения функции.

б. В ячейку В2 ввести выражение для вычисления функции f (x1,x2) в точках $A2, B$1 (знак $ - признак абсолютной адресации, при которой будут зафиксированы первый столбец - перебор значений переменной x1 и первая строка - перебор значений переменной x2) и нажать одновременно три клавиши Ctrl, Shift, Enter, поскольку формула используется для обработки массивов. В строке формул должны появиться фигурные скобки.

в. Выделить ячейку В2 и, протянув маркер заполнения сначала вниз, пробегая все ячейки, заполненные в столбце А, а затем вправо, пробегая все ячейки, заполненные в строке 1, заполнить массив значений функции в узловых точках области построения графика.

г. На вкладке "Стандартные" Мастера диаграмм выбрать подтип Поверхность. Поверхностная диаграмма дает трехмерное изображение функции, а контурная диаграмма представляет вид сверху на поверхностную диаграмму и является аналогом линий уровня исследуемой функции.

2. В MATLAB - функции plot3, mesh, surf, surfl.

Характеристики

Тип файла
Документ
Размер
7,08 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов лабораторной работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее