Главная » Просмотр файлов » 3.Динамические мат.модели и характеристики АС и их элементов

3.Динамические мат.модели и характеристики АС и их элементов (539517)

Файл №539517 3.Динамические мат.модели и характеристики АС и их элементов (Проектирование автоматических систем. Теория принятия решений. Принцип Парето)3.Динамические мат.модели и характеристики АС и их элементов (539517)2015-07-22СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

3. ДИНАМИЧЕСКИЕ МАТЕМАТИЧЕСКИЕ МОДЕЛИ И ХАРАКТЕРИСТИКИ АС.

(динамические)

3.1. Динамические звенья автоматических технических систем и их свойства.

АС представляют некоторой совокупностью элементов, обладающих определенными функциональными и динамическими свойствами.

Состояние динамической системы и характер ее движения в любой момент времени определяются некоторым количеством переменных. Минимальное число независимых переменных-координат ,необходимое и достаточное для полного определения характеристик движения системы, называют числом степеней свободы. Элемент системы, обладающий одной степенью свободы, определяют как динамическое звено.

Рис. 3.1. Толкатель.

Рис. 3.2. Манипулятор промышленного робота.

На рис.3.1. однооперационный манипулятор – толкатель сталкивает деталь с конвейера, является звеном транспортной технологической системы. Толкатель реализует одну степень свободы. На рис. 3.2. манипулятор промышленного робота переносит подобную деталь, реализуя при этом три степени свободы: А1, А2, А3 (угловые). Манипулятор во втором случае сам является сложной динамической системой , т.к. состоит из нескольких элементарных звеньев, скомпонованных в одну цепочку.

В установившемся состоянии, при постоянном внешнем воздействии, АС находится в положении статического равновесия. Зависимость выходного параметра от входного воздействия в статическом режиме называется статической характеристикой АС. Если на звено кроме входного воздействия

Х подается внешнее воздействие Z (рис.3.3) , то его статический режим характеризуется семейством характеристик (для каждого фиксированного значения Zi .

Рис.3.3. Изображение динамического звена

на схемах.

Рис.3.4. Статические характеристики звена.

В динамическом режиме при изменении X или Z на изменение выходного параметра Y влияют также физические свойства динамического звена (инерционные, упругие, диссипативные) , (рис.3.4).

Рис.3.5. Динамическая характеристика звена.

На рис.3.5. имеет место скачкообразное увеличение X от X1 до X2. Изменение

Y1 до Y2 происходит не мгновенно, а в течении некоторого времени (t2 - t1). Это изменение при заданном изменении от X1 до X2 называют динамической характеристикой звена или АС.

Статические характеристики звена АС представляют собой алгебраические и трансцендентные функции y от x, его динамические свойства описываются дифференциальными уравнениями, передаточной функцией, частотными и временными характеристиками.

Динамическое звено характеризуется свойствами линейности и стационарности. Линейным является звено, ММ которого (алгебраическое или дифференциальное уравнение) включает только линейные комбинации переменных x и y и их производные.

Стационарным считают звено, в котором сдвиг входного воздействия во времени приводит к такому же сдвигу выходного параметра без изменения его формы и параметров. Динамические свойства нестационарных звеньев со временем изменяются.

Стационарные линейные динамические звенья или системы описываются линейными дифференциальными уравнениями с постоянными коэффициентами. Нестационарные линейные – с переменными коэффициентами.

Для линейных стационарных систем применим принцип суперпозиций :

реакция системы на несколько одновременно действующих входных воздействий равна сумме реакций системы на каждое воздействие в отдельности.

3.2. Линеаризация математических моделей.

Реальные технические обьекты описываются нелинейными дифференциальными и алгебраическими уравнениями. Для предварительной

оценки технических решений и прогнозирования используют линеаризованные ММ. Для этого применяют метод разложения нелинейных

функций в ряд Тейлора. В результате ММ динамического звена в виде дифференциального уравнения второго порядка

(3.1)

преобразуется в линейное с постоянными коэффициентами

(3.2.)

Геометрическая линеаризация применяется для статических характеристик

звена или системы. Используют метод осреднения или метод малого отклонения. Первый используют при больших изменениях входного воздействия х , а второй – при малых отклонения от положения статического равновесия.

Рис. 3.6. Метод малого отклонения. 1- кривая

y=f(x); 2- линейная аппроксимация.

Рис.3.7.Метод осреднения. 1 – кривая y=f(x); 2 – линейная

аппроксимация.

В методе малого отклонения кривую y=f(x) заменяют касательной в точке

x0, y0. Ошибка аппроксимации E зависит от отклонения . Уравнение статической характеристики в результате линеаризации имеет вид :

(3.3)

где (dy/dx)0 – производная , определяемая в точке с координатами x0, y0 и равная тангенсу угла наклона касательной.

Если k=(dy/dx)0 , тогда y=k*x , где k – коэффициент передачи звена.

Для элементарного звена – усилителя мощности этот коэффициент называется коэффициент усиления.

В методе усреднения операцию дифференцирования заменяют символом

p, а операцию интегрирования - символом 1/p. В итоге дифференциальное уравнение приобретает вид алгебраического уравнения. Так уравнение (3.2) при использовании оператора p приводится к виду:

Отсюда можно непосредственно получить уравнение линеаризованной статической характеристики звена:

(3.4)

3.3. Передаточные функции.

ММ АС упрощается при использовании преобразования Лапласа, с помощью которого линейное дифференциальное уравнение приводят к алгебраическому с комплексными переменными.

(3.5)

Это преобразование функции x(t) вещественного переменного ставит в соответствие функцию X(s) комплексного переменного s, где s= .

Функцию x(t) называют оригиналом, а X(s) – изображение по Лапласу.

В символической форме (3.5) можно записать:

(3.6)

где : L – оператор Лапласа.

Преобразование Лапласа можно применять только для линейных дифференциальных уравнений.

Если свойства системы описываются диф. уравнением:

(3.7)

то в операторной форме оно записывается как:

(3.8)

Используя преобразования Лапласа получаем алгебраическое уравнение относительно Y(s):

(3.9)

Это называется прямым преобразованием Лапласа.

Выражение

(3.10)

определяет предаточную функцию, которая является отношением лапласова изображением выходной величины к лапласову изображению входной величины при нулевых начальных условиях. При этом комплексная переменная s отождествляется с оператором дифференцирования p.

Из (3.10) следует:

(3.11)

Для звена с двумя входными воздействиями согласно принципу суперпозиций:

(3.13)

Обратный переход от изображения Y(s) к оригиналу y(t) выполняется путем обратного преобразования Лапласа. Существуют разработанные таблицы соответствия оригиналов и изображений.

3.4. Переходная и импульсная переходная характеристики.

Для оценки переходных процессов применяют единичное ступенчатое и единичное импульсное воздействие.

Единичное ступенчатое воздействие описывается функцией (рис.3.8) :

(3.13)

Рис. 3.8. Единичное ступенчатое воздействие.

Переходная характеристика определится :

(3.14)

Переходная характеристика представляет собой обратное преобразование Лапласа от передаточной функции динамического звена или АС, деленной на

комплексную переменную s .

Рис.3.9. Переходная характеристика.

1 – для апериодических процессов, без смены закона производной и без экстремума; 2 – колебательные переходные процессы, производная меняет знак; 3 – монотонные процессы, производная не меняет знак.

Реакция динамического звена или АС на единичное импульсное воздействие

называется импульсной переходной характеристикой. Единичное импульсное воздействие представляется очень узким импульсом, описываемым функцией - дельта функцией Дирака ( , ,

) , (рис.3.10)

(3.15)

t

Рис. 3.10. График единичного импульсного

воздействия.

Используя соответствующие подстановки, получим:

(3.16)

Рис.3.11. График импульсной переходной характеристики;

1 – апериодические процессы; 2 – колебательные процессы

(со сменой знака производной).

Изображение Лапласа дельта – функции:

(3.17)

Изображение выходного параметра:

(3.18)

Переходя от изображения к оригиналу, получим:

(3.19)

Импульсная переходная характеристика представляет собой обратное преобразование Лапласа от передаточной функции:

(3.20)

(3.21)

Переходная и импульсная переходная характеристики, так же как и диф. уравнения, описывают динамические свойства звена или АС и представляют их характеристики. Их легко находят и экспериментально.

Если внешнее воздействие отлично ступенчатого или импульсного, то его представляют как сумму последовательных ступенчатых или импульсных

воздействий, а реакцию системы, согласно принципа суперпозиций, находят как сумму реакций на эти воздействия, следуемые друг за другом через некоторые промежутки времени .

3.5. Частотные характеристики.

Если в качестве воздействия использовать фактор, изменяющийся по гармоническому закону:

(3.22)

Характеристики

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов лекций

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6312
Авторов
на СтудИзбе
312
Средний доход
с одного платного файла
Обучение Подробнее