Реализация алгоритма построения коммутирующих дифференциальных операторов по геометрическим данным (526733), страница 4
Текст из файла (страница 4)
. .i.Ñîïðÿãàþùèé îïåðàòîð:S =1−5x3x4−1∂+5∂ −2 .x5 + 30x5 + 30Êîììóòèðóþùèå îïåðàòîðû:P4 = ∂ 4 −20x3 (x5 − 120) 2x2 (7x5 − 90)x(3x10 − 145x5 + 450)∂−3000∂+18000(x5 + 30)2(x5 + 30)3(x5 + 30)4x3 (x5 − 120) 4x2 (x10 − 1065x5 + 12150 3P6 = ∂ − 30∂ + 60∂ +(x5 + 30)2(x5 + 30)36x(59x10 − 2535x5 + 5850 29000∂ −(x5 + 30)41800090000128x15 − 13755x10 + 145350x5 − 54000∂+(x5 + 30)5x4 (49x15 − 10515x10 + 283050x5 − 972000)(x5 + 30)6Ñïèñîê ëèòåðàòóðûThe Jacobian conjecture is stablyequivalent to the Dixmier conjecture, Mosc. Math.
J. 7 (2007), no. 2,[1] Belov-Kanel A., Kontsevich M.,209218, 349.Semistable sheaves on Weierstrass cubics andcommuting dierential operators, preprint, to appear[3] Burchnall J.L., Chaundy T.W., Commutative ordinary dierentialoperators, Proc. London Math. Soc. Ser. 2, (1923) 420-440; Proc.[2] Burban I., Zheglov A.,21Royal Soc.
London Ser. A,118(1928) 557-583.Èåðàðõèÿ Êàäîìöåâà-Ïåòâèàøâèëè è ïðîáëåìà[4] Äåìèäîâ Å.Å.,, Ôóíäàìåíò. è ïðèêë. ìàòåì., 1998, 4:1, 367460Øîòòêè[5] P.G. Grinevich, Rational solutions for the equation of commutation ofdierential operators, Functional Anal. Appl., 16:1, 1519 (1982).22Commuting pairs of linear ordinary dierentialoperators of orders four and six, Physica D 31 (1988), 424-433[7] J. Dixmier, Sur les algebres de Weyl, Bull.
Soc. Math. France.(1968),[6] Grunbaum F.A.,96209242.Î êîììóòàòèâíûõ ïîäêîëüöàõ íåêîòîðûõ íåêîììóòàòèâíûõ êîëåö, Ôóíêö. àíàëèç è åãî ïðèë. 11:1 (1977), 11-14.[9] Êðè÷åâåð È.M., Ìåòîäû àëãåáðàè÷åñêîé ãåîìåòðèè â òåîðèè íåëèíåéíûõ óðàâíåíèé, ÓÌÍ , 6 (1977), 183-208[10] Êðè÷åâåð È.M., Êîììóòàòèâíûå êîëüöà îáûêíîâåííûõ ëèíåéíûõäèôôåðåíöèàëüíûõ îïåðàòîðîâ, Ôóíêö. àíàëèç è åãî ïðèë., 12:3,[8] Äðèíôåëüä Â.,321978, 2031Holomorphic bundles over algebraic curvesand nonlinear equations:6, 4768 (1980).[12] Manin Y., Algebraic aspects of nonlinear dierential equations, Itogi[11] I.M. Krichever, S.P.
Novikov,, Russian Math. Surveys,35Nauki Tekh., Ser. Sovrem. Probl. Mat. 11, 5-152 (1978).[13] A.E. Mironov, Self-adjoint commuting ordinary dierential operators,Invent math, DOI 10.1007/s00222-013-0486-8[14] A.E. Mironov, A ring of commuting dierential operators of rank 2corresponding to a curve of genus 2, Sbornik: Math., 195:5, 711722(2004).[15] A.E.
Mironov, On commuting dierential operators of rank 2, SiberianElectronic Math. Reports. 6, 533536 (2009).[16] A.E. Mironov, Commuting rank 2 dierential operators correspondingto a curve of genus 2, Functional Anal. Appl., 39:3, 240243 (2005).[17] O.I. Mokhov, Commuting dierential operators of rank 3 and nonlineardierential equations, Mathematics of the USSR-Izvestiya, 35:3, 629655 (1990).Category of vector bundles on algebraic curves and innitedimensional Grassmanians, Int. J.
Math., 1 (1990), 293-342.[19] Mulase M., Algebraic theory of the KP equations, Perspectives in[18] Mulase M.,Mathematical Physics, R.Penner and S.Yau, Editors, (1994), 151-21823Tata lectures on Theta II, Birkhauser, Boston, 1984[21] Mumford D., An algebro-geometric constructions of commutingoperators and of solutions to the Toda lattice equations, Korteweg-deVries equations and related non-linear equations, In Proc. Internat.[20] Mumford D.,Symp. on Alg.
Geom., Kyoto 1977, Kinokuniya Publ. (1978) 115-153.Dierential operators and rank 2 bundles overelliptic curves[23] Wilson G., Bispectral commutative ordinary dierential operators, J.[22] Previato E., Wilson G.,, Comp. Math. 81 (1992), 107-119.reine angew.
Math. 442 (1993), 177 -204.24.