TCH 31-332-2006 Высотные здания (524734), страница 15
Текст из файла (страница 15)
, (5.1)
где N - частота срыва вихрей, Гц;
D - характерный размер тела;
V - скорость набегающего воздушного потока.
Значение числа Струхаля определяется формой поперечного сечения тела, углом набегающего воздушного потока и безразмерным числом Рейнольдса
, (5.2)
где n - коэффициент кинематической вязкости воздуха.
Зависимость Sh = Sh(a) для конкретного объекта следует определять экспериментально на модели в аэродинамической трубе при числах Рейнольдса 5·102-103. Испытания должны проводиться при круговом изменении угла набегающего потока (от 0 до 360°) с интервалом D = 30°. Частота аэродинамической пульсирующей силы в направлении, перпендикулярном к потоку, равна N, а вдоль потока - 2 N. Сравнивая полученные из опыта частоты N = N(a) с собственной частотой колебаний здания, можно оценить вероятность появления ветрового резонанса.
6 Под галопированием понимается такая разновидность динамической неустойчивости протяженного податливого объекта, при которой перемещения происходят в направлении, перпендикулярном к потоку, при частоте колебаний, намного меньшей частоты срыва вихрей.
В процессе испытаний модели объекта в аэродинамической трубе (при различных значениях угла набегающего потока) экспериментально выясняются условия возникновения галопирования. В случае, если галопирование оказывается возможным, результатом испытаний является величина критической скорости, при которой сооружение входит в режим галопирования. Режим работы сооружения можно считать безопасным (по условиям галопирования), если найденная критическая скорость превышает максимальную скорость ветра (в порывах при трехсекундном осреднении) в уровне крыши здания, то есть значение mH по формуле (2.4).
Особый вид галопирования - "галопирование в спутной струе" - может наблюдаться при обтекании воздушным потоком отдельных фрагментов здания.
7 Если протяженная обтекаемая конструкция имеет малую относительную толщину в направлении потока, то для некоторых форм поперечного сечения при ненулевом значении угла набегающего потока возникает внешний (скручивающий) аэродинамический момент, который, в свою очередь, стремится увеличить значение угла . По достижении определенной (критической) скорости воздушного потока происходит теоретически неограниченный рост угла . На практике это означает, что при достаточно большом, но конечном значении a несущая способность конструкции (по условиям кручения) будет исчерпана.
Статическая потеря устойчивости (по крутильной форме) тонкостенной конструкции, обтекаемой воздушным потоком, носит название дивергенции.
В процессе испытаний модели конструкции в аэродинамической трубе определяется критическая скорость дивергенции здания в целом или отдельных его фрагментов.
Режим работы конструкции по условиям дивергенции является безопасным, если критическая скорость дивергенции не превышает значения mH по формуле (2.4).
8 Флаттер - это такое проявление аэродинамической неустойчивости, при котором возмущенное движение представляет собой колебания со стремительно возрастающими амплитудами. При этом существенно, что свойства устойчивости зависят от скорости воздушного потока: система, устойчивая при малых скоростях, становится неустойчивой после того, как скорость ветра достигла некоторого критического значения.
Известен ряд разновидностей флаттера; некоторые из них следует рассматривать применительно к отдельным деталям высотных зданий.
Классический флаттер может проявляться в виде изгибно-крутильных колебаний, амплитуда которых при приближении скорости потока к критическому значению неограниченно растет.
Срывной флаттер связан с явлением срыва вихрей (см. 5): если в потоке воздуха находится плохо обтекаемое препятствие, то за ним образуется вихревой след ("дорожка Кармана"); в момент срыва вихрей с поверхности тела на само это тело действует периодическая сила, перпендикулярная к потоку и вызывающая, при определенной скорости потока, значительные резонансные колебания.
Особо следует отметить возможность возникновения панельного флаттера - интенсивных колебаний больших фрагментов плоских поверхностей (застекленные участки стен, металлические и синтетические покрытия крыш зданий).
Для установления критической скорости воздушного потока, при которой возникает тот или иной вид флаттера, следует выполнять продувку в аэродинамической трубе моделей соответствующих деталей здания. В частности, при исследовании панельного флаттера необходимо моделировать натурные варианты крепления листов покрытия по его контуру.
Безопасная (по условиям аэродинамической устойчивости) работа здания будет гарантирована, если полученная при испытаниях критическая скорость флаттера превышает значение nmH формуле (2.4).
9 Под бафтингом понимают нестационарные нагрузки на здание, связанные с пульсациями набегающего потока. Эти пульсации могут быть вызваны атмосферной турбулентностью или переменными скоростями в следе расположенного выше по потоку здания ("бафтинг в спутной струе"). Особо опасным является бафтинг, возникающий при обтекании примерно одинаковых зданий в спутной струе себе подобных.
Наиболее достоверный способ оценки частоты и амплитуды возникающих при бафтинге сил - это проведение модельных испытаний в аэродинамической трубе с последующим пересчетом результатов на натурные условия.
10 На зданиях располагаются детали, обтекание которых следует рассматривать как самостоятельную задачу. К таким деталям относятся: на крышах - шпили, башни, фигурные ограждения, ограждения вентиляционных устройств; на стенах зданий - балконы, открытые лоджии, резкие (угловые) изгибы контура здания. Все эти детали необходимо рассчитывать на средние ветровые нагрузки при максимальной местной скорости воздушного потока (величины скоростей и аэродинамические коэффициенты устанавливаются по результатам модельных испытаний в аэродинамической трубе), а также проверять на возможность возникновения нестационарных явлений (см. пп. 5 - 9).
11 Требования, относящиеся к обеспечению комфортных условий эксплуатации здания:
- ограничение максимального линейного ускорения верхнего этажа здания;
- ограничение максимальной скорости ветра на подходах к зданию в зоне перемещения людей.
Линейное ускорение верхнего этажа здания определяется в результате динамического расчета конечно - элементной модели здания на действие нагрузок, выявленных в процессе исследований по пп. 5 - 9.
Здание удовлетворяет требованиям комфортности, если максимальное значение ускорения amax в уровне крыши здания не превышает 0,08 м/с2. В противном случае необходимо осуществлять конструктивные мероприятия с целью снижения max.
Определение направлений и скоростей воздушного потока в пешеходных зонах производится в аэродинамической трубе на модели здания с учетом окружающей застройки. Пешеходная зона удовлетворяет условиям комфортности, если при 10-минутном интервале осреднения скорость воздушного потока на высоте пешехода не будет превосходить 15 м/с. Если в каком-либо диапазоне углов набегающего потока скорость на высоте пешехода при 10-минутном осреднении превышает 15 м/с, то в пешеходной зоне должны устанавливаться специальные защитные устройства, уменьшающие скорость движения воздуха.
Предельно допустимое значение 15 м/с для скорости на высоте пешехода при 10-минутном осреднении установлены с учетом, что в порывах скорость может превосходить граничное (вызывающее дискомфорт) значение 20 м/с.
Приложение Е
(рекомендуемое)
Мероприятия по защите от прогрессирующего обрушения
1 Высотные здания должны быть защищены от прогрессирующего (цепного) обрушения в случае локального разрушения несущих конструкций в результате возникновения чрезвычайных ситуаций (ЧС) - сейсмические воздействия, опасные метеорологические явления, взрывы снаружи и внутри здания, пожары, аварии или значительные повреждения несущих конструкций вследствие дефектов в материалах, некачественного производства работ и прочее.
2 Устойчивость здания против прогрессирующего обрушения должна проверяться расчетом и обеспечиваться конструктивными мерами, способствующими развитию в несущих конструкциях и их узлах пластических деформаций при предельных нагрузках.
Расчет устойчивости здания рекомендуется производить на особое сочетание нагрузок, включающее постоянные, длительные, кратковременные воздействия и одну из следующих ситуаций:
- повреждение перекрытий общей площадью до 40,0 м2;
- неравномерные осадки основания;
- воздействие горизонтальной нагрузки на вертикальные несущие конструкции - 35 кН для колонн и 10 кПа на поверхности стен в пределах одного этажа;
- расположение карстовой воронки диаметром 6,0 м в любом месте под фундаментом здания.
3 Для расчета зданий против прогрессирующего обрушения рекомендуется использовать пространственную расчетную модель, которая может учитывать элементы, являющиеся при обычных эксплуатационных условиях ненесущими, а при наличии локальных разрушений активно участвуют в перераспределении нагрузки.
4 Основное средство защиты зданий от прогрессирующего обрушения - резервирование прочности несущих элементов, обеспечение необходимой несущей способности колонн, ригелей, диафрагм, дисков перекрытий и стыков конструкций; создание неразрезности перекрытий, повышение пластических свойств связей между несущими конструкциями, включение в работу пространственной системы ненесущих элементов.
5 В высотных зданиях рекомендуется применять монолитные и сборно-монолитные перекрытия, которые должны быть надежно соединены с вертикальными несущими конструкциями здания связями.
Связи, соединяющие перекрытия с колоннами, ригелями, диафрагмами и стенами, должны удерживать перекрытие от падения (в случае его разрушения) на нижележащий этаж. Связи должны рассчитываться на нормативный вес половины пролета перекрытия с расположенным на нем полом и другими конструктивными элементами.
6 В случае локального разрушения одной вертикальной конструкции - стены или колонны, являющейся опорой для монолитного перекрытия, не должно произойти обрушения перекрытия. При этом прогиб и раскрытие трещин в перекрытии не ограничиваются. Количество и места расположения дополнительной арматуры для этого случая определяются расчетом. Указанная арматура может учитываться при расчетах на эксплуатационные нагрузки.
7 Сборные конструкции здания - наружные и внутренние стеновые панели, скорлупы, железобетонные перегородки должны быть соединены с перекрытиями связями, устанавливаемыми по расчету на эксплуатационные или монтажные нагрузки с учетом возможности аварийных локальных разрушений.
Горизонтальные связи между навесными наружными стеновыми панелями и дисками перекрытий следует назначать с несущей способностью не менее 10 кН на 1 м длины стены, шаг связей не более 3,6 м.
8 Перегородки рекомендуется проектировать из листов по каркасу либо едиными сборными элементами из легкого бетона. Конструкции крепления перегородок к вышележащему перекрытию, а также соединения их с соседними перегородками, колоннами и стенами, выполняемые в виде металлических связей, должны быть рассчитаны на восприятие собственного веса перегородок, и обеспечивать их зависание в случае обрушения нижележащего перекрытия.
9 Эффективная работа связей, препятствующих прогрессирующему обрушению, возможна при обеспечении их пластичности в предельном состоянии, чтобы после исчерпания несущей способности связь не выключалась из работы и допускала без разрушения необходимые деформации. Для выполнения этого требования связи должны предусматриваться из пластичной листовой или арматурной стали, а прочность анкеровки связей должна быть больше усилий, вызывающих их текучесть.
Приложение Ж
(рекомендуемое)
Рекомендации по огнезащите несущих железобетонных конструкций
1 Толщина защитного слоя бетона в несущих конструкциях здания должна быть не менее 60 мм для того, чтобы защитный слой бетона прогревался не свыше 300 °С и после пожара не оказывал влияния на дальнейшую эксплуатацию конструкции (при стандартном пожаре, длительностью 180 мин). При этом, защитный слой бетона должен иметь армирование в виде противооткольной сетки из стержней диаметром 2 - 3 мм с ячейками не более 50 мм, что будет способствовать предотвращению взрывообразного разрушения бетона.
2 Конструирование элементов должно препятствовать нагреву ненапрягаемой арматуры во время пожара более 400 °С. После нагрева до указанных пределов температур, в охлажденном состоянии прочностные свойства арматуры восстанавливаются.