Главная » Просмотр файлов » СНиП 2.05.03-84 (с изм. 1 1991)

СНиП 2.05.03-84 (с изм. 1 1991) (524589), страница 73

Файл №524589 СНиП 2.05.03-84 (с изм. 1 1991) (СНиП 2.05.03-84) 73 страницаСНиП 2.05.03-84 (с изм. 1 1991) (524589) страница 732013-09-18СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 73)

Таблица 9

g

Значение коэффициента c при m

0,5

0,67

1,0

2,0

2,5 и более

0,25

1,014

1,063

1,166

1,170

1,192

0,5

1,016

1,075

1,214

1,260

1,300

1,0

1,017

1,081

1,252

1,358

1,416

2,0

1,018

1,085

1,275

1,481

1,516

5,0

1,018

1,088

1,292

1,496

1,602

10,0

1,018

1,088

1,298

1,524

1,636

Св. 10

1,018

1,089

1,303

1,552

1,580

5. Расчет по устойчивости пластинок стенки сплошных изгибаемых элементов, имеющих поперечные ребра и одно продольное ребро в сжатой зоне, следует выполнять:

первой пластинки — между сжатым поясом и продольным ребром — по формуле

, (14)

где w1 - коэффициент, принимаемый по табл. 2;

sx , sy , txy - напряжения, определяемые по п. 2;

sx,cr, sy,cr, txy,cr критические напряжения, определяемые согласно п. 4;

второй пластинки — между растянутым поясом и продольным ребром — по формуле (10), принимая при этом w2 = 1.

5.1. Приведенное критическое продольное нормальное напряжение sx,cr,ef следует определять по формуле (11), при этом коэффициент упругого защемления следует принимать:

первой пластинки: элементов с болтовыми соединениями — c = 1,3; таких же и сварных элементов при объединении с железобетонной плитой — c = 1,35; прочих сварных элементов — по табл. 10;

второй пластинки — c = 1.

Таблица 10

g

0,5

1,0

2,0

5,0

10 и более

c

1,16

1,22

1,27

1,31

1,35

5.2. Приведенное критическое поперечное нормальное напряжение sy,cr,ef первой пластинке следует определять по формуле

, (15)

где i - коэффициент, принимаемый равным 1,0 при и 2,0 при 0,7 > m > 0,4;

c - коэффициент упругого защемления, принимаемый по табл. 11 для элементов, объединенных с железобетонной плитой, и для балок с болтовыми соединениями, по табл. 12 — для сварных балок.

Таблица 11

m

0,5

0,8

1,0

1,5

2,0 и более

c

1,07

1,18

1,31

1,52

1,62

Таблица 12

g

Значение коэффициента c при m

0,5

0,6

0,9

1,0

1,5

2,0

2,5

3,0

2

1,06

1,07

1,13

1,17

1,31

1,32

1,29

1,25

4

1,06

1,07

1,14

1,19

1,38

1,44

1,43

1,39

Приведенное критическое поперечное нормальное напряжение sy,cr,ef при воздействии сосредоточенной нагрузки, когда действующие напряжения определяются по формуле (6), следует вычислять по формуле (15) с умножением на коэффициент 1,55; если при этом а > 2h1 + 2lef, то надлежит принимать .

Приведенное критическое поперечное нормальное напряжение sy,cr,ef во второй пластинке следует определять по формуле (12), при этом следует принимать: c = 1; z — по табл. 8; z — по табл. 6 при r = 0,35.

5.3. Приведенное критическое касательное напряжение txy,cr,ef следует определять по формуле (13), при этом для первой пластинки вместо коэффициента защемления должен быть принят коэффициент , для второй пластинки — c = 1.

6. Расчет по устойчивости пластинок стенки сплошных изгибаемых элементов, имеющих поперечные ребра и несколько продольных ребер жесткости, следует выполнять:

первой пластинки — между сжатым поясом и ближайшим ребром — по формуле (14) и формулам (11), (15) и (13) для sx,cr,ef, sy,cr,ef, txy,cr,ef соответственно;

для последующих сжатых пластинок — по формулам для первой пластинки, принимая коэффициент защемления c = 1;

для сжато-растянутой пластинки — по формуле (10), принимая w1 = 1, и формулам (11), (15) и (13) для sx,cr,ef, sy,cr,ef, txy,cr,ef как для второй пластинки по п. 5.

Расчет по устойчивости пластинки растянутой зоны стенки следует выполнять по формуле

, (16)

где

sy,cr , txy,cr - критические поперечное нормальное и касательное напряжения, определяемые по sy,cr,ef и txy,cr,ef согласно указаниям п. 4, при этом приведенное критическое поперечное нормальное напряжение sy,cr,ef следует определять по формуле

, (17)

где d — коэффициент, принимаемый по табл. 13.

Таблица 13

Тип
пластинки

Значения коэффициента d при

0,4

0,5

0,6

0,7

0,8

1,0

1,5

2,0

Примыкаю­щая к растянутому поясу

1240

1380

2520

1650

1820

2240

3860

6300

Промежу­точная

920

970

1020

1060

1100

1190

1530

2130

П р и м е ч а н и е. а и hef следует определять по п. 1.

Приведенное критическое касательное напряжение txy,cr,ef следует определять:

для пластинки, примыкающей к растянутому поясу, — по формуле

, (18)

для промежуточной растянутой пластинки — по формуле

, (19)

где d — меньшая сторона отсека (а или hef);

m1 — коэффициент, принимаемый равным m при а > hef и 1/m при а < hef .

7. Расчет по устойчивости пластинок стенки сплошных сжато-изгибаемых элементов (балки жесткости пролетного строения распорной системы, арки или пилона) при сжатии сечения по всей высоте следует выполнять по формуле

, (20)

где sх — максимальное продольное нормальное напряжение на границе пластинки от продольной силы N и изгибающего момента Мm, принимаемого в соответствии с п. 2;

w1 — коэффициент, определяемый по табл. 2;

sy , sx — поперечное нормальное и среднее касательное напряжения, определяемые согласно п. 2;

sx,cr , sy,cr , txy,cr - критические напряжения, определяемые по sx,cr,ef , sy,cr,ef , txy,cr,ef согласно указаниям п. 4.

При действии на части высоты сечения растягивающих напряжений расчет следует выполнять как для стенки сплошных изгибаемых элементов (см. пп. 4—6).

ПРИЛОЖЕНИЕ 17*

Обязательное

КОЭФФИЦИЕНТЫ ДЛЯ РАСЧЕТА НА ВЫНОСЛИВОСТЬ

Таблица 1*

Эффективные коэффициенты концентрации напряжений b

для расчета стальных конструкций мостов на выносливость

Расположение расчетного сечения

Коэффициент b
для стали марок

и характеристика конструкции

16Д

15ХСНД,

10ХСНД,

390-14Г2АФД,
390-15Г2АФДпс

1. По основному металлу после дробеметной очистки или с необработанной прокатной поверхностью у деталей с прокатными или обработанными фрезерованием, строжкой кромками в сечениях вне сварных швов и болтов

1,0

1,0

2. То же, с кромками, обрезанными газовой машинной резкой:

а) нормального качества

1,1

1,2

б) чистовой (смыв-процесс, резка с
кислородной завесой, кислородно-плазменная)

1,0

1,0

3. По основному металлу деталей в сечениях:

а) нетто по соединительным болтам составных элементов, а также у свободного отверстия (черт. 1)

1,3

1,5

б) нетто у отверстия с поставленным в него высокопрочным болтом, затянутым на нормативное усилие (черт. 2)

1,1

1,3

в) брутто по первому ряду высокопрочных болтов в прикреплении фасонки к не стыкуемым в данном узле сплошным балок и элементам решетчатых ферм (черт. 3)

1,3mf

1,5mf

г) то же, в прикреплении к узлу или в стыке двухступенчатых элементов, у которых:

непосредственно перекрытая часть сечения (2Аn) составляет, %, не менее: 80 общей площади сечения, в том числе при двусторонних накладках - 60 (черт. 4)

1,4mf

1,6mf

непосредственно перекрытая часть сечения (2Аn) составляет, %, не менее: 60 общей площади сечения, в том числе при двусторонних накладках - 40 (см. черт. 4)

1,5mf

1,7mf

д) то же, в прикреплении к узлу или в стыке с односторонними накладками двухступенчатых элементов, у которых непосредственно перекрытая часть сечения (2Аn) составляет (черт. 5), % общей площади сечения:

60 и более

1,6mf

1,8 mf

менее 60

1,7mf

1,9mf

е) то же, в прикреплении к узлу или в стыке с односторонними накладками одностенчатых элементов (черт. 6)

2,2mf

2,5mf

4. По основному металлу деталей в сечении по границе необработанного стыкового шва с усилением, имеющим плавный переход (при стыковании листов одинаковой толщины и ширины)

1,5

1,8

5. По основному металлу деталей в сечении по зоне перехода к стыковому шву, обработанному в этом месте абразивным кругом или фрезой при стыковании листов:

а) одинаковой толщины и ширины

1,0

1,0

б) разной ширины в сечении по более узкому листу

1,2

1,4

в) разной толщины в сечении по более тонкому листу

1,3

1,5

г) разной толщины и ширины в сечении по листу с меньшей площадью

1,6

1,9

6. По основному металлу элемента, прикрепляемого внахлестку, в сечении по границе лобового углового шва:

а) без механической обработки этого шва при отношении его катетов b:a³2 (при направлении большего катета b вдоль усилия)

2,3

3,2

б) то же, при отношении катетов b:a=1,5

2,7

3,7

в) при механической обработке этого шва и отношении катетов b:a³2

1,2

1,4

г) то же, при отношении катетов b:a=1,5

1,6

1,9

7. По основному металлу элемента, прикрепляемого внахлестку фланговыми угловыми швами, в сечениях по концам этих швов независимо от их обработки

3,4

4,4

8. По основному металлу растянутых поясов балок и элементов ферм в сечении по границе поперечного углового шва, прикрепляющего диафрагму или ребро жесткости:

а) без механической обработки шва, но при наличии плавного перехода от шва к основному металлу при сварке:

ручной

1,6

1,8

полуавтоматической под флюсом

1,3

1,5

б) при механической обработке шва фрезой

1,0

1,1

9. Сечения составных элементов из листов, соединенных непрерывными продольными швами, сваренными автоматом, при действии усилия вдоль оси шва

1,0

1,0

10. По основному металлу элементов в местах, где обрываются детали:

а) фасонки, привариваемые встык к кромкам поясов балок и ферм или втавр к стенкам и поясам балок, а также к элементам ферм, при плавной криволинейной форме и механической обработке перехода от фасонки к поясу, при полном проплавлении толщины фасонки

1,2

1,4

б) оба пояса на стенке двутаврового сечения при условии постепенного уменьшения к месту обрыва ширины и толщины пояса, присоединения стенки к поясам на концевом участке с полным проплавлением и механической обработкой перехода поясов к стенке

1,3

1,6

в) один лист пакета пояса сварной балки при уменьшении к месту обрыва толщины с уклоном не круче 1:8 и ширины листа со сведением ее на нет с уклоном не круче 1:4 и с механической обработкой концов швов

1,2

1,4

г) накладная деталь для усиления ослабленного отверстиями сечения элемента (компенсатор ослабления) при симметричном уменьшении ее ширины со сведением на нет, с уклоном не круче 1:1 и с механической обработкой концов швов

1,2

1,4

11. По основному металлу элементов проезжей части в сечениях по крайнему ряду высокопрочных болтов в прикреплении:

а) диагонали продольных связей к нижнему поясу продольной балки, а также «рыбки» к нижнему поясу поперечной балки

1,1

1,3

б) фасонки горизонтальной диафрагмы к нижнему поясу продольной балки

1,3

1,5

в) «рыбки» к верхнему поясу продольной балки

1,6

1,8

12. По оси стыкового шва с полным проплавлением корня шва:

а) при автоматической и полуавтоматической сварке под флюсом и ручной сварке, с контролем с помощью ультразвуковой дефектоскопии (УЗД)

1,0

1,0

б) то же, без контроля УЗД

1,2

1,4

13. По расчетному сечению углового шва:

а) лобового шва, выполненного сваркой:

ручной

2,3

3,2

автоматической и полуавтоматической под флюсом

1,9

2,4

б) флангового шва

3,4

4,4

в) продольного соединительного шва составного элемента на участке его прикрепления к узлу при непосредственном перекрытии стыковыми накладками или узловыми фасонками лишь части сечения

1,5

1,7

г) продольного поясного шва балки

1,7

1,9

14. По основному металлу листа настила ортотропной плиты в зоне перехода к монтажному стыковому шву, выполненному односторонней автоматической сваркой под флюсом:

а) с наложением первого слоя ручной сваркой на флюсомедной подкладке, без механической обработки усиления

2,4

2,7

б) то же, с механической обработкой усиления с обратной стороны стыка

1,6

1,8

в) на стеклотканево-медной подкладке с примиенением гранулированной металлохимической присадки, без механической обработки усиления

1,5

1,65

15. По основному металлу листа настила отротропной плиты в зоне перехода к потолочному угловому шву его монтажного соединения с поясом главной балки или фермы внахлестку:

а) выполненному ручной сваркой

6,4

7,1

б) то же, с применением монтажной полосовой вставки, привариваемой встык к кромкам ортотропных плит, прикрепляемых внахлестку к поясу балки

3,8

4,2

16. По основному металлу листа настила ортротропной плиты в зоне перехода к его монтажному стыковому соединению с поясом главной балки или фермы, выполненному односторонней автоматической сваркой под флюсом:

а) с наложением первого слоя ручной сваркой на флюсомедной подкладке, с механической обработкой усиления с обратной стороны стыка, при одинаковой толщине стыкуемых листов

1,6

1,8

б) то же, при разной толщине стыкуемых листов

1,8

2,0

в) на стеклотканево-медной подкладке с применением металлохимической присадки, без механической обработки усиления, при одинаковой толщине стыкуемых листов

1,5

1,65

г) то же, при разной толщине стыкуемых листов

1,7

1,9

17. По основному металлу в зоне узла пересечения продольного ребра ортотропной плиты с поперечным в одноярусной ортотропной плите:

а) продольное ребро проходит через V-образный вырез с выкружками на концах радиусом 15-20 мм в стенке поперечного ребра и приварено к ней с одной стороны двумя угловыми швами

2,2

2,4

б) продольное ребро проходит через вырез в стенке поперечного ребра и в опорной пластинке и приварено к ней угловыми швами

1,3

1,5

18. То же, в двухъярусной ортотропной плите:

а) тавровое продольное ребро соединяется с поперечным высокопрочными болтами через отверстия, просверленные в полке продольного и поясе поперечного ребер

1,2

1,3

б) тавровое продольное ребро соединяется с поперечным специальными прижимами

1,1

1,2

19. По основному металлу листа настила и продольных ребер ортотропной плиты по границе швов в зоне цельносварного монтажного поперечного стчка ортотропной плиты:

а) при совмещенных в одном сечении стыках листа настила и продольных ребер, без механической обработки усиления швов

2,2

2,5

б) с разнесенными от стыка листа настила стыками продольного ребра, без механической обработки усиления швов

2,2

2,4

в) с разнесенными от стыка листа настила обработанными стыками продольного ребра, с механической обработкой усиления с обратной стороны стыка листа настила

2,1

2,3

20. То же, в комбинированном стыке - сварном листа настила, болтовом в ребрах:

а) с устройством прямоугольных скругленных вырезов в продольных ребрах, без полного проплавления их концевых участков, без механической обработки усиления стыкового шва листа настила

2,8

3,1

б) с устройством обработанных полукруглых выкружек в продольных ребрах, с полным проплавлением их концевых участков, с механической обработкой усиления шва с обратной стороны стыка листа настила

2,1

2,3

в) с обрывом продольных ребер вблизи стыка листа настила и постановкой вставки между их торцами, без механической обработки усиления стыкового шва листа настила

1,9

2,1

П р и м е ч а н и я: 1. mf — коэффициент, учитывающий влияние сдвигов по контактам соединяемых элементов и принимаемый по табл. 3 в зависимости от числа поперечных рядов болтов n в соединении.

2. Параметр n определяется:

числом поперечных рядов болтов в прикреплении данного элемента к фасонке или стыковой накладке, когда этот элемент обрывается в данном узле (п. 3, г, д, е);

общим числом поперечных рядов болтов в прикреплении фасонки к непрерывному элементу (п. 3, в).

Черт. 1. Расположение проверяемого на выносливость расчетного сечения А—А по основному металлу в сечениях нетто
по соединительным болтам составных элементов,
а также у свободного отверстия

Черт. 2. Расположение проверяемого на выносливость расчетного сечения А—А по основному металлу в сечениях нетто
у отверстия с поставленным в него высокопрочным болтом,
затянутым на нормативное усилие

Черт. 3. Расположение проверяемого на выносливость расчетного сечения А—А по основному металлу в сечении брутто по первому ряду высокопрочных болтов в прикреплении фасонки
к нестыкуемым в данном узле поясам сплошных балок
и элементам решетчатых форм

Черт. 4. Расположение проверяемого на выносливость расчетного сечения А—А по основному металлу в сечении брутто
по первому ряду высокопрочных болтов в прикреплении к узлу или в стыке двухстенчатых элементов

Черт. 5. Расположение проверяемого на выносливость расчетного сечения А—А по основному металлу в сечении брутто по первому ряду высокопрочных болтов в прикреплении к узлу или в стыке двухстенчатых элементов с односторонними накладками

Черт. 6. Расположение проверяемого на выносливость расчетного сечения А—А по основному металлу в сечении брутто по первому ряду высокопрочных болтов в прикреплении к узлу или в стыке одностенчатых элементов с односторонними накладками

Таблица 2

Эффективные коэффициенты концентрации напряжений для расчета
на выносливость стальных канатов висячих, вантовых и предварительно напряженных стальных пролетных строений

Устройства, закрепляющие или отклоняющие канаты

Коэффициент

bs

1. Анкеры клинового типа

1,1

2. Анкеры с заливкой конца каната в конической или цилиндрической полости корпуса сплавом цветных металлов или эпоксидным компаундом

1,3

3. Анкеры со сплющиванием концов круглых проволок, защемлением их в анкерной плите и заполнением пустот эпоксидным компаундом с наполнителем из стальной дроби

1,1

4. Отклоняющие канат устройства, в том числе стяжки и сжимы, имеющие круговое очертание ложа, скругление радиусом 5 мм у торцов (в месте выхода каната) и укороченную на 40 мм (по сравнению с длиной ложа) прижимную накладку:

при непосредственном контакте каната со стальным ложем и поперечном давлении

1 МН/м (1 тс/см)

1,2

при контакте каната со стальным ложем через мягкую прокладку толщиной t ³ 1 мм и поперечном давлении

2 МН/м (2 тс/см)

1,2

5. Хомуты подвесок; стяжки и сжимы без отклонения каната при поперечном давлении:

q £ 1 МН/м (1 тс/см) и непосредственном контакте с канатом

1,1

q £ 2 МН/м (2 тс/см) и контакте с канатом через мягкую прокладку толщиной t ³ 1 мм

1,1

В табл. 2 обозначено:

N — усилие в канате, МН (тс);

r — радиус, м (см), кривой изгиба каната в отклоняющем устройстве

Таблица 3*

n

1-3

4-6

7-8

9-10

11-15

16 и более

mf

1,00

1,05

1,12

1,16

1,20

1,23

ПРИЛОЖЕНИЕ 18*

Обязательное

РАСЧЕТ ОРТОТРОПНОЙ ПЛИТЫ ПРОЕЗЖЕЙ ЧАСТИ
ПО ПРОЧНОСТИ И УСТОЙЧИВОСТИ

1. Метод расчета ортотропной плиты должен учитывать совместную работу листа настила, подкрепляющих его ребер и главных балок.

2. Ортотропную плиту допускается условно разделять на отдельные системы — продольные и поперечные ребра с соответствующими участками листа настила (см. чертеж).

Коробчатое пролетное строение

а — продольный разрез; б — план; в — поперечный разрез; г — ребро нижней плиты; 1, 2, 3, ... i — номер поперечного ребра верхней плиты

усилия в ортотропной плите при работе НА ИЗГИБ МЕЖДУ ГЛАВНЫМИ БАЛКАМИ

3. Изгибающие моменты в продольных ребрах ортотропной плиты следует определять по формуле

Мsi = М1 + М, (1)

M1 — изгибающий момент в отдельном продольном ребре полного сечения, включающего прилегающие участки листа настила общей шириной, равной расстоянию а между продольными ребрами (см. чертеж, в), рассматриваемом как неразрезная балка на жестких опорах; момент определяется от нагрузки, расположенной непосредственно над этим ребром;

М — изгибающий момент в опорном сечении продольного ребра при изгибе ортотропной плиты между главными балками, определяемый при загружении поверхности влияния нагрузкой, прикладываемой в узлах пересечения продольных и поперечных ребер.

Нагрузку, передаваемую с продольных ребер на узлы пересечения с поперечными ребрами, следует определять с помощью линии влияния опорной реакции неразрезной многопролетной балки на жестких опорах.

В пределах крайних третей ширины ортотропной плиты автопроезда и в ортотропной плите однопутных железнодорожных пролетных строений с ездой поверху следует принимать М = 0.

Ординаты поверхности влияния для вычисления изгибающего момента М в опорном сечении продольного ребра над «средним» поперечным ребром l (см. чертеж, а) следует определять по формуле

, (2)*

где M1i - принимаемые по табл. 1 (с умножением на l) ординаты линии влияния изгибающего момента в опорном сечении продольного ребра над «средним» поперечным ребром l при расположении нагрузки над поперечным ребром i;

l — пролет продольного ребра (см. чертеж, б);

L — пролет поперечного ребра (см. чертеж, в);

u — координата положения нагрузки от начала поперечного ребра.

Таблица 1

Номер попереч­ного

Ординаты линии влияния при z

ребра i

0

0,1

0,

0,5

1,0

1

0

0,0507

0,0801

0,1305

0,1757

2

0

-0,0281

-0,0400

-0,0516

-0,0521

3

0

0,0025

-0,0016

-0,0166

-0,0348

4

0

0,0003

0,0016

0,0015

0,0046

5

0

-0,0001

0

0,0014

0,0025

6

0

0

0

0,0001

0,0012

В табл. 1 обозначено:

z - параметр, характеризующий изгибную жесткость ортотропной плиты и определяемый по формуле

,

где Isl - момент инерции полного сечения продольного ребра относительно горизонтальной оси (см. чертеж в);

a - расстояние между продольными ребрами;

Is - момент инерции полного поперечного ребра — с прилегающим участком настила шириной 0,2 L, но не более l — относительно горизонтальной оси х1 (см. чертеж, а).

П р и м е ч а н и е. В табл. 1 принята следующая нумерация поперечных ребер i: ребра 2—6 расположены на расстоянии l одно от другого в каждую сторону от «среднего» поперечного ребра 1 (см. чертеж, a).

4. В железнодорожных пролетных строениях лист настила ортотропной плиты проезжей части следует рассчитывать на изгиб, при этом прогиб листа настила не проверяется.

При устройстве пути на балласте наибольшие значения изгибающих моментов в листе настила над продольными ребрами следует определять по формулам:

в зоне под рельсом

My = -0,1 na2 ; (3)

в зоне по оси пролетного строения

My = -0,08 na2 , (4)

где n — нагрузка на единицу длины, принимаемая по п. 2 обязательного приложения 5*.

РАСЧЕТ ЭЛЕМЕНТОВ ОРТОТРОПНОЙ ПЛИТЫ
ПО ПРОЧНОСТИ

5. Для проверки прочности элементов ортотропной плиты необходимо получить в результате расчетов в предположении упругих деформаций, стали в сечениях I, II, III и точках А, В, С, А1, В1, D1, указанных на чертеже, нормальные напряжения в листе настила, продольных и поперечных ребрах, а также касательные напряжения в листе настила, от изгиба ортотропной плиты между главными балками sxp, syp и txyp и совместной работы ее с главными балками пролетного строения sxc, syc и txyc.

6. Проверку прочности растянутого при изгибе ортотропной плиты крайнего нижнего волокна продольного ребра следует выполнять в зоне отрицательных моментов неразрезных главных балок в сечении I—I посредине пролета l среднего продольного ребра (см. чертеж, а — точка A) по формулам:

ysxc + m1c1sxp £ Ry m ; (5)

sxc + sxp £ m2 Ryn m , (6)

где Ry, Ryn — расчетное и нормативное сопротивления металла продольного ребра;

m — коэффициент условий работы, принимаемый по табл. 60*;

m1, m2 — коэффициенты условий работы; для автодорожных и городских мостов, а также для автодорожного проезда совмещенных мостов их следует принимать по табл. 2*; для железнодорожных и пешеходных мостов, а также для железнодорожного проезда совмещенных мостов m1 = 1 / ‘ ; при этом проверка по формуле (6) не выполняется;

c — коэффициент влияния собственных остаточных напряжений, принимаемый c1 = 0,9 — для крайнего нижнего волокна продольного ребра, выполненного из полосы, прокатного уголка или прокатного тавра, и c1 = 1,1 — для продольного ребра в виде сварного тавра;

y, ‘ — коэффициенты, определяемые по пп. 4.28* и 4.26*.

Таблица 2*

sxc / sxp

Значения коэффициентов m1 и m2
для полосовых ребер

m1

m2

0

0,55

1,40

0,25

0,40

1,50

0,45

0,25

1,60

0,65

0,13

1,60

П р и м е ч а н и е. Коэффициенты m1 и m2 для промежуточных значений sxc/sxp следует определять линейной интерполяцией.

7. Проверку прочности сжатого при местном изгибе ортотропной плиты крайнего нижнего волокна продольного ребра следует выполнять в зоне положительных моментов неразрезных главных балок в опорном сечении II—III среднего продольного ребра (см. чертеж а — точка В) по формуле

sxp

ysxc + c2 ¾ £ Ry m , (7)

где y, ‘ — коэффициенты, определяемые по пп. 4.28* и 4.26*;

c2 - коэффициент влияния собственных остаточных напряжений, принимаемый c2 = 1,1 — для крайнего нижнего волокна ребра, выполненного из полосы, прокатного уголка или прокатного тавра, и c2 = 0,9 — для ребра в виде сварного тавра;

m - коэффициент условий работы, принимаемый по табл. 60*.

8. Проверку прочности крайнего нижнего волокна поперечной балки следует выполнять в сечении III—III посредине ее пролета (см. чертеж в — точка С) по формуле

syp

¾ £ Ry m , (8)

где ‘ — коэффициент, определяемый по формулам (143) и (144);

m — коэффициент условий работы, принимаемый по табл. 60*.

9. Расчет по прочности листа настила следует выполнять в точках А1, В1, D1 (см. чертеж б) по формулам:

; (9)

txy £ Rs m , (10)

где sx = sxc + m4 sxp ; sy = syc + m4 syp ;

txy = txyc + txyp ;

m - коэффициент условий работы, принимаемый по табл. 60*;

m3 — коэффициент, равный 1,15 при sy = 0 или 1,10 при sy ¹ 0;

m4 — коэффициент условий работы, принимаемый равным 1,05 — при проверке прочности листа настила в точке A1 ортотропной плиты автодорожных и городских мостов и 1,0 — во всех остальных случаях.

При выполнении данной проверки допускается принимать в качестве расчетных загружения, при которых достигает максимального значения одно из действующих в данной точке ортотропной плиты напряжений sx, sy или txy.

РАСЧЕТ ЭЛЕМЕНТОВ ОРТОТРОПНОЙ ПЛИТЫ
ПО УСТОЙЧИВОСТИ

10. Местная устойчивость листа настила между продольными ребрами, продольных полосовых ребер, свесов поясов тавровых продольных и поперечных ребер должна быть обеспечена согласно пп. 4.45* и 4.47, а стенки тавровых ребер — согласно обязательному приложению 16*. При этом следует выбирать наиболее невыгодную комбинацию напряжений от изгиба ортотропной плиты между главными балками и совместной ее работы с главными балками пролетного строения.

11. Общая устойчивость листа настила, подкрепленного продольными ребрами, должна быть обеспечена поперечными ребрами.

Момент инерции поперечных ребер Js (см. п. 3) сжатой (сжато-изогнутой) ортотропной плиты следует определять по формуле
, (11)*

где a — коэффициент, определяемый по табл. 2, а*;

y — коэффициент, принимаемый равным: 0,055 при k = 1; 0,15 при k = 2; 0,20 при k ³ 3;

k — число продольных ребер рассчитываемой ортотропной плиты;

L — расстояние между стенками главных балок или центрами узлов геометрически неизменяемых поперечных связей;

l — расстояние между поперечными ребрами;

Jsl — момент инерции полного сечения продольного ребра (см. п. 3);

sxc — действующие напряжения в листе настила от совместной работы ортотропной плиты с главными балками пролетного строения, вычисленные в предположении упругих деформаций стали;

sx,cr,ef — напряжение, вычисленное по табл. 68* по значению sx,cr = sxc.

Таблица 2а*

w

0

0,1

0,2

0,3

0,4

0,5

a

0

0,016

0,053

0,115

0,205

0,320

Окончание таблицы 2а*

w

0,6

0,7

0,8

0,9

0,95

1

a

0,462

0,646

0,872

1,192

1,470

2,025

Допускается также определять sx,cr,ef по следующей формуле

sx,cr,ef = .

П р и м е ч а н и е. Коэффициент w определяется по формуле , где j0 следует находить по табл. 3* п. 12 при lef = l.

Для сжатой ортотропной плиты, не воспринимающей местной нагрузки, в формуле (11)* коэффициент a следует принимать равным 2,025, что обеспечивает равенство расчетной длины lef продольных ребер расстоянию между поперечными ребрами l.

12*. Расчет по общей устойчивости ортотропной плиты в целом (сжатой и сжато-изогнутой) при обеспечении условия (11)* следует выполнять по формуле

sxc £ j0 Ry m , (12)*

где sxc — см. п. 11*;

j0 — коэффициент продольного изгиба, принимаемый по табл. 3* в зависимости от гибкости l0;

m — коэффициент условий работы, принимаемый по табл. 60* п. 4.19*.

Таблица 3*

Коэффициент j0 для стали марок

Гибкость
l0, l1

16Д

15ХСНД

10ХСНД ,
390-14Г2АФД ,
390-15Г2АФДпс

0

1,00

1,00

1,00

41

1,00

1,00

1,00

44

1,00

1,00

0,96

50

1,00

0,92

0,88

53

1,00

0,87

0,83

60

0,95

0,76

0,72

70

0,83

0,64

0,59

80

0,73

0,56

0,49

90

0,64

0,50

0,43

100

0,59

0,44

0,38

110

0,53

0,39

0,33

120

0,47

0,34

0,28

130

0,41

0,30

0,25

140

0,36

0,26

0,22

150

0,32

0,23

0,20

160

0,29

0,21

0,17

170

0,26

0,19

0,16

180

0,23

0,17

0,14

190

0,21

0,15

0,13

200

0,20

0,14

0,11

Гибкость следует определять по формуле

, (13)*

где lef - расчетная (свободная) длина продольных ребер, определяемая из выражения lef = l . Коэффициент w находят из табл. 2а* по значению

;

Js , Jsl и l - см. п. 3;

a - расстояние между продольными ребрами;

lh - толщина листа настила;

x - коэффициент, принимаемый равным 1,0 —для ортотропной плиты нижнего пояса и по табл. 4* — для плиты верхнего пояса коробчатых главных балок;

A - площадь полного сечения продольного ребра;

- (здесь Jt — момент инерции полного сечения продольного ребра при чистом кручении).

Таблица 4*

f / i

Коэффициент x

0

1,00

0,01

0,75

0,05

0,70

0,10

0,66

f — прогиб продольного ребра между поперечными ребрами;

i — радиус инерции полного сечения продольного ребра.

Сжато-изогнутую ортотропную плиту железнодорожных мостов на общую устойчивость следует проверять по формуле (167), принимая гибкость по формуле (13)* при x = 1,0.

13. Тавровые продольные ребра (см. чертежи, в, г) сжатой ортотропной плиты нижнего пояса коробчатых главных балок при изгибно-крутильной форме потери устойчивости следует рассчитывать по формуле (12)*, принимая коэффициент продольного изгиба j0 в зависимости от гибкости l1.

Гибкость l1 следует определять по формуле

, (14)

где Ip = Iy + Iz + A (hw - e)2 ;

l — см. п. 3;

hw — высота стенки ребра толщиной tw (см. чертеж, г);

е — расстояние от центра тяжести полки шириной bf, толщиной tf до центра тяжести таврового продольного ребра (см. чертеж, г);

Iy, Iz — соответственно момент инерции сечения таврового продольного ребра относительно горизонтальной оси у и вертикальной оси z;

;

;

A = bf tf + hw tw .

Для обеспечения местной устойчивости элементов таврового сечения продольного ребра толщина полки и стенки должна удовлетворять требованиям п. 4.45*:

при bf > 0,3 hw продольное ребро полного сечения следует считать двутавром, при bf = 0 — тавром;

при 0 < bf £ 0,3 hw требования к толщине стенки определяются по линейной интерполяции между нормами для двутавра и тавра (bf = 0).

ПРИЛОЖЕНИЕ 19

Обязательное

УЧЕТ ПОЛЗУЧЕСТИ, ВИБРОПОЛЗУЧЕСТИ БЕТОНА
И ОБЖАТИЯ ПОПЕРЕЧНЫХ ШВОВ
В СТАЛЕЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЯХ

1. При учете ползучести бетона в статически определимых конструкциях необходимо определить уравновешенные в пределах поперечного сечения (далее — внутренние) напряжения и соответствующие деформации.

Эпюры относительных деформаций и внутренних напряжений
от ползучести бетона

Для конструкции, состоящей из стальной балки со сплошной стенкой и объединенной с ней в уровне проезда железобетонной плиты (см. чертеж), внутренние напряжения от ползучести бетона в общем случае надлежит определять по следующим формулам:

на уровне центра тяжести бетонной части сечения (растяжение)

sb,kr = -a sbl ; (1)

в крайней фибре нижнего пояса стальной балки (растяжение или сжатие)

; (2)

в крайней фибре верхнего пояса стальной балки (сжатие)

; (3)

в стержнях крайнего ряда ненапрягаемой арматуры плиты при Еr = Ers = Est (сжатие)

Характеристики

Тип файла
Документ
Размер
8,58 Mb
Материал
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов стандарта

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее