[учебник] Введение в теорию игр (с приложениями к экономике). Васин, Морозов (2003) (1186146), страница 48
Текст из файла (страница 48)
Îïûò ìàòåìàòè÷åñêîãî ìîäåëèðîâàíèÿ ýêîíîìèêè. − Ì.: Ýíåðãîàòîìèçäàò, 1996.[81] Ïåòðîñÿí Ë.À., Çåíêåâè÷ Í.À., Ñåìèíà Å.À. Òåîðèÿ èãð. − Ì.:Âûñøàÿ øêîëà, 1998.[82] Ïîçèöèîííûå èãðû. Ñá. ñòàòåé ïîä ðåä. Í.Í.Âîðîáüåâà. − Ì.:Íàóêà, 1967.[83] Radon J. Mengen konvexer Körper, die einen gemeinsam Punktenthalten. Math. Ann., 1921, B.
83, S. 113-115.[84] Ðîáèíñîí Äæ. Èòåðàòèâíûé ìåòîä ðåøåíèÿ èãð.  ñá. [65], ñ. 110118.[85] Ðîçåíìþëëåð Í. Êîîïåðàòèâíûå èãðû è ðûíêè. − Ì.: Ìèð, 1974.[86] Sanchez I., Sobel J. Hierarchical design and enforcement of incometax polices. J. of Public Economics, 1985, v. 26, p. 1-18.274Ñïèñîê ëèòåðàòóðû[87] Ñîêîëîâñêèé Ë.Å. Ïîäîõîäíûé íàëîã è ýêîíîìè÷åñêîå ïîâåäåíèå. Ýêîíîìèêà è ìàòåìàòè÷åñêèå ìåòîäû, 1989, ò. 25, âûï. 4.[88] Òåîðèÿ èãð. Àííîòèðîâàííûé óêàçàòåëü ïóáëèêàöèé ïî 1968 ã.− Ë.: Íàóêà, 1976.[89] Òåîðèÿ èãð.
Àííîòèðîâàííûé óêàçàòåëü ïóáëèêàöèé îòå÷åñòâåííîé è çàðóáåæíîé ëèòåðàòóðû çà 1969 − 1974 ãã. − Ë.: Íàóêà,1980.[90] Friedman J. On the strategic importance of prices versus quantities.Rand J. of Economics, 1986, 4, p. 607-622.[91] Fundenberg D., Tirole J. Game Theory. − Cambridge, Mass.: TheMIT Press, 1996.[92] Harsanyi J.C. Games with incomplete information played byBayesian players. Management Science, 1968-69, v.14, p.
159-182,320-334, 486-502.[93] Handbook of Game Theory with economic applications, Vol. I andII. ( R.J. Aumann and S. Hart eds.).− Amsterdam − Lausanne −New York − Oxford − Shannon − Tokyo: Elsevier, 1994.[94] Õåëëè Ý. Î ñîâîêóïíîñòè âûïóêëûõ òåë ñ îáùèìè òî÷êàìè.ÓÌÍ, 1936, âûï. 2, ñ. 80-81.[95] Ho Y., Luh P., Muralindharan R. Information structure.Stackelberg games and incentive controllability. − IEEE Trans.Aut.
Contr., 1981, v.26, 2, p. 454-460.[96] Hodges J.L., Lehmanm E.L. Some problems in Minimax PointEstimation. Ann. Math. Stat., 1950, v. 21, 2, p. 182-192.[97] Öåðìåëî Ý. Î ïðèìåíåíèè òåîðèè ìíîæåñòâ ê òåîðèè øàõìàòíîéèãðû.  ñá. [65], ñ. 167-172.[98] Selten R. Spieltheoretische Behandlung eines Oligopolmodells mitNachfrageträgheit. Zeitschrift für die gesamte Staatswissenschaft,1965, 12, s. 301-324.275Óêàçàòåëü îáîçíà÷åíèé[99] Selten R. Reexamination of the perfectness concept for equilibriumpoints in extensive games. International J.
of the Game Theory,1975, 4, p. 25-55.[100] Øàïèðî Ã.Í. Çàìå÷àíèå î âû÷èñëèòåëüíîì ìåòîäå â òåîðèè èãð. ñá. [65], ñ. 118-127.[101] Shapley L.S., Snow R.N. Basic solutions of discrete games.Contributions to the theory of games. I (Kuhn H.W., Tucker A.W.eds.). Ann. Math. Studies, 24, − Princeton: Princeton Univ.Press, 1953, p. 51-73.[102] Shapley L.S. A value for n-person games. Contributions to thetheory of games. II (Kuhn H.W., Tucker A.W. eds.).
Ann. Math.Studies, 28, − Princeton: Princeton Univ. Press, 1953, p. 307-317.[103] Shapley L.S. Some topics in two-person games. Advances in gametheory (Dresher M., Shapley L.S., Tucker A.W. eds.). Ann. Math.Studies, 52, Princeton, 1964.[104] Shiffman M. On the equality of minmax=maxmin, and the theoryof games, the RAND Corporation, RM-243, 1949.[105] Øèêèí Å.Â. Îò èãð ê èãðàì. − Ì.: Ýäèòîðèàë, 1997.[106] Øíèðåëüìàí Ë.Ã. Î ðàâíîìåðíûõ ïðèáëèæåíèÿõ.
Èçâ. ÀÍÑÑÑÐ, ñåð. ìàòåì., 1938, 1, ñ. 53-60.[107] Sperner E. Neuer Beweis für die Invarianz der Dimensionzahl undGebietes. Abh. Math. Sem. Univ. Hamburg, 1928, B. 6, 3/4, S.265-272.[108] Chandler P., Wilde L. A general charachterization of optimalincome ta[ enforcement. Rewiew of Economics Studies, 1987, v. 65,p. 165-189.[109] Charnes A., Kortanek K. On balanced sets, cores and programming.− Cah.
Centre etudes rech. operat., 1967, v. 9, 1, p. 32-43.[110] Edgeworth E.Y. The pure theory of monopoly. In Edgeworth PapersRalating to Political Economy.-N.Y.: Brut Franklin, 1925, v. 1,p. 111-142.276Óêàçàòåëü îáîçíà÷åíèéÓêàçàòåëü îáîçíà÷åíèéE m − m-ìåðíîå åâêëèäîâî ïðîñòðàíñòâî âåêòîðîâ x = (x1 , ..., xm ) ñîqm Pñêàëÿðíûì ïðîèçâåäåíèåì x, y =xi yi è íîðìîé |x| =x, x ;i=1Argmax f (x) = {x0 ∈ X | f (x0 ) = max f (x)} − ìíîæåñòâî òî÷åê ìàêx∈Xx∈Xñèìóìà ôóíêöèè f, îïðåäåëåííîé íà ìíîæåñòâå X;Argmin f (x) = {x0 ∈ X | f (x0 ) = min f (x)};x∈Xx∈X{ak } − ïîñëåäîâàòåëüíîñòü ýëåìåíòîâ ak , k = 1, 2, ...;EX, V arX − ìàòåìàòè÷åñêîå îæèäàíèå è äèñïåðñèÿ ñëó÷àéíîé âåëè÷èíû X;e − âåêòîð, âñå êîìïîíåíòû êîòîðîãî ðàâíû 1;el − âåêòîð, l-àÿ êîìïîíåíòà êîòîðîãî ðàâíà 1, à îñòàëüíûå êîìïîíåíòû − íóëåâûå;2S − ìíîæåñòâî âñåõ ïîäìíîæåñòâ ìíîæåñòâà S ;|S| − ÷èñëî ýëåìåíòîâ êîíå÷íîãî ìíîæåñòâà S ;nCm− ÷èñëî ñî÷åòàíèé èç m ïî n;def= − "ðàâíî ïî îïðåäåëåíèþ";∀ ∃⇒ ⇔ − êâàíòîðû "äëÿ âñÿêîãî", "íàéäåòñÿ", ëîãè÷åñêèåñâÿçêè "ñëåäóåò"è "òîãäà è òîëüêî òîãäà, êîãäà";∅ − ïóñòîå ìíîæåñòâî;− êîíåö äîêàçàòåëüñòâà.277.