[учебник] Введение в теорию игр (с приложениями к экономике). Васин, Морозов (2003) (1186146), страница 47
Текст из файла (страница 47)
Ñá. ñòàòåé ïîä ðåä.Í.Í.Âîðîáüåâà. − Ì.: Ôèçìàòãèç, 1963.[10] Bertrand J. Review de théorie mathématique de la richesse sociale.Recherches sur les principes mathématique de la théorie desrichesses. Journal des Savants, 1883, p. 499-508.[11] Áëåêóýë Ä., Ãèðøèê Ì.
Òåîðèÿ èãð è ñòàòèñòè÷åñêèõ ðåøåíèé.− Ì.: Èíîñòðàííàÿ ëèòåðàòóðà, 1958.[12] Áîíåíáëàñò Õ.Ô., Êàðëèí Ñ., Øåïëè Ë.Ñ. Èãðû ñ íåïðåðûâíîéôóíêöèåé âûèãðûøà.  ñá. [9], ñ. 337-352.[13] Áîíäàðåâà Î.Í. Íåêîòîðûå ïðèìåíåíèÿ ìåòîäîâ ëèíåéíîãî ïðîãðàììèðîâàíèÿ ê òåîðèè êîîïåðàòèâíûõ èãð. Ïðîáëåìû êèáåðíåòèêè. 1963, âûï.10, ñ. 119-140.[14] Borges T. Iterated elimination of dominated strategies in aBertrand-Edgeworth model. Rewiew of Economic Studies, 1992, v.59, p. 163-176.[15] Borel E. 1) The theory of play and integral equations with skewsymmetric kernels.
2) On games that involve chance and skillof the players. 3) On system of linear forms of skew symmetricdeterminants and the general theory of play. Econometrica, 1953,v. 21, 1, p. 97-117.[16] Borel E. Application aux jeux de hasard. Traité du calcul desprobabilités et des ses applications, Applications des jeux hasard,E.Borel et collab.
− Paris: Gauthier − Villars, 1938, v. IV, fasc. 2,p. 122.[17] Brown G.W. Iterative solutions of games by fictitious play. Incollected book [1], p. 374-376.[18] Brouwer L.E.J. On continuous vector disributions of surfaces.Amsterdam Proc., 1909, v. 11, continued in 1910, v. 12,13.269Ñïèñîê ëèòåðàòóðû[19] Walras L. Éléments d'économie politique pure.
− Lausanne, 1874.[20] Wald A. Contributions to the theory of statictical estimation andtesting hypotheses. Ann. Math. Stat., 1939, v. 10, 4, p. 299-326.[21] Âàëüä À. Ñòàòèñòè÷åñêèå ðåøàþùèå ôóíêöèè.  ñá. [65], ñ. 300522.[22] Âàñèí À.À. Ìîäåëè ïðîöåññîâ ñ íåñêîëüêèìè ó÷àñòíèêàìè. −Ì.: Èçä-âî Ìîñê. óí-òà, 1983.[23] Âàñèí À.À. Ìîäåëè äèíàìèêè êîëëåêòèâíîãî ïîâåäåíèÿ. − Ì.:Èçä-âî Ìîñê. óí-òà, 1989.[24] Âàñèí À.À., Ïàíîâà Å.È. Ñîáèðàåìîñòü íàëîãîâ è êîððóïöèÿ âíàëîãîâûõ îðãàíàõ. − Ì.: Ðîññèéñêàÿ ïðîãðàììà ýêîíîìè÷åñêèõèññëåäîâàíèé, 2000, Ñåð. "íàó÷íûå äîêëàäû", 99/10.[25] Âàñèí À.À., Àãàïîâà Î.Á.
Ìàòåìàòè÷åñêàÿ ìîäåëü îïòèìàëüíîé îðãàíèçàöèè íàëîãîâîé èíñïåêöèè.  ñá. "Ïðîãðàììíîàïïàðàòíûå ñðåäñòâà è ìàòåìàòè÷åñêîå îáåñïå÷åíèå âûñ÷èñëèòåëüíûõ ñèñòåì". − Ì.: Èçä-âî Ìîñê. óí-òà, 1993, ñ. 167-186.[26] Âàñèí À.À. , Âàñèíà Ï.À. Îïòèìèçàöèÿ íàëîãîâîé ñèñòåìû âóñëîâèÿõ óêëîíåíèÿ îò íàëîãîâ. Ðîëü îãðàíè÷åíèé íà øòðàô. −Ì.: Ðîññèéñêàÿ ïðîãðàììà ýêîíîìè÷åñêèõ èññëåäîâàíèé, 2002,Ñåð. "íàó÷íûå äîêëàäû", 01/09.[27] Âàñèí À.À. , Âàñèíà Ï.À., Ìàðõóýíäà Ô.Õ. Íàëîãîâîå ïðèíóæäåíèå äëÿ íåîäíîðîäíûõ ôèðì./ Ïðåïðèíò 2001/025.
− Ì.:Ðîññèéñêàÿ ýêîíîìè÷åñêàÿ øêîëà, 2001.[28] Âàòåëü È.À., Åðåøêî Ô.È. Ìàòåìàòèêà êîíôëèêòà è ñîòðóäíè÷åñòâà. − Ì.: Çíàíèå, 1974.[29] Âåíòöåëü Å.Ñ. Èññëåäîâàíèå îïåðàöèé. − Ì.: Ñîâåòñêîå ðàäèî,1981.[30] Ville J. Sur la théorie générale des jeux ou intervient l'abilite desjeueurs, Traité du calcul des probabilités et des ses applications,Applications des jeux hasard, E.Borel et collab. − Paris: Gauthier− Villars, 1938, v. IV, fasc. 2, p. 105-113.270Ñïèñîê ëèòåðàòóðû[31] Âèëêàñ Ý.É. Îïòèìàëüíîñòü â èãðàõ è ðåøåíèÿõ. − Ì.: Íàóêà,1990.[32] Vives X. Rationing rules and Bertrand-Edgeworth equilibria in largemarkets.
Economic Letters. 1986, v. 21, p. 113-116.[33] Wolfovitz J. Minimax estimates of the mean of normal distributionwith known variance. Ann. Math. Stat., 1950, v. 21, 2, p. 218-230.[34] Âîðîáüåâ Í.Í. Îñíîâû òåîðèè èãð. Áåñêîàëèöèîííûå èãðû. −Ì.: Íàóêà, 1984.[35] Ãåéë Ä. Òåîðèÿ ëèíåéíûõ ýêîíîìè÷åñêèõ ìîäåëåé. − Ì.:ÈË,1963.[36] Ãåðìåéåð Þ.Á. Ââåäåíèå â òåîðèþ èññëåäîâàíèÿ îïåðàöèé. −Ì.: Íàóêà, 1971.[37] Ãåðìåéåð Þ.Á.
Èãðû ñ íåïðîòèâîïîëîæíûìè èíòåðåñàìè. − Ì.:Íàóêà, 1976.[38] Ãåðìåéåð Þ.Á. Îá èãðàõ äâóõ ëèö ñ ôèêñèðîâàííîé ïîñëåäîâàòåëüíîñòüþ õîäîâ. ÄÀÍ, 1971, v. 198, 5, ñ. 1001-1004.[39] Ãîðåëèê Â.À. Òåîðèÿ èãð è èññëåäîâàíèå îïåðàöèé. − Ì: Èçä-âîÌÈÍÃÏ, 1978.[40] Ãðåíü Å.
Ñòàòèñòè÷åñêèå èãðû è èõ ïðèìåíåíèå. − Ì.: Ñòàòèñòèêà, 1975.[41] Äàâûäîâ Ý.Ã. Èññëåäîâàíèå îïåðàöèé. − Ì.: Âûñøàÿ øêîëà,1990.[42] Äàíöåð Ë., Ãðþíáàóì Á., Êëè Â. Òåîðåìà Õåëëè. − Ì.: Ìèð,1968.[43] Dantzig G.B. A proof of the equivalence of the programmingproblem and the problem. In collected book [1], p. 330-335.[44] Gilles D.B. Solutions to general non-zero-sum games. Contributionsto the theory of games. IV (Kuhn H.W., Tucker A.W. eds.). Ann.Math. Studies, 40, − Princeton: Princeton Univ.
Press, 1959,p. 47-86.271Ñïèñîê ëèòåðàòóðû[45] Äðåøåð Ì. Ñòðàòåãè÷åñêèå èãðû. Òåîðèÿ è ïðèëîæåíèÿ. − Ì.:Ñîâåòñêîå ðàäèî, 1964.[46] Äþáèí Ã.Í., Ñóçäàëü Â.Ã. Ââåäåíèå â ïðèêëàäíóþ òåîðèþ èãð.− Ì.: Íàóêà, 1981.[47] Kakutani S. A generalisation of Brower's fixed point theorem. DukeMath. J., 1941, v. 8, 3, p. 457-459.[48] Êàðëèí Ñ. Ìàòåìàòè÷åñêèå ìåòîäû â òåîðèè èãð, ïðîãðàììèðîâàíèè è ýêîíîìèêå. − Ì.: Ìèð, 1964.[49] Êèíè Ð.Ë., Ðàéôà Õ.
Ïðèíÿòèå ðåøåíèé ïðè ìíîãèõ êðèòåðèÿõ.Ïðåäïî÷òåíèÿ è çàìåùåíèÿ. − Ì.: Ðàäèî è ñâÿçü, 1981.[50] Êîëìîãîðîâ À.Í., Ôîìèí Ñ.Â. Ýëåìåíòû òåîðèè ôóíêöèé èôóíêöèîíàëüíîãî àíàëèçà. − Ì.: Íàóêà, 1972.[51] Cowell F., Gordon G.F. Auditing with "ghosts". In book "TheEconomics of Organized Crime". 1995, p. 184-198.[52] Êîíîíåíêî À.Ô., Íîâèêîâà Í.Ì. Îáçîð ðàçâèòèÿ èãð Ãåðìåéåðà. Â ñá. "Ïðîãðàììíîå îáîðóäîâàíèå è âîïðîñû ïðèíÿòèÿ ðåøåíèé". − Ì.: Èçä-âî Ìîñê. óí-òà, 1989, ñ. 201-210.[53] Knaster B., Kuratowski C., Masurkievicz S. Ein Beweis desFixpunktsatzes fur n-dimensionale Simplexe. Fund.
Math., 1929,B. 14, S. 132-137.[54] Kreps D., Scheinkman J. Quantity precommitment and Bertrandcompetition yield Cournot outcomes. The Bell J. of Economics,1983, v. 14, p. 326-337.[55] Êóêóøêèí Í.Ñ., Ìîðîçîâ Â.Â. Òåîðèÿ íåàíòàãîíèñòè÷åñêèõ èãð.− Ì.: Èçä-âî Ìîñê. óí-òà, 1984.[56] Kukushkin N. A fixed point theorem for decreasing mappings.Economic Letters, 1999, v. 46, p. 23-26.[57] Êóêóøêèí Í.Ñ. Ðîëü âçàèìíîé èíôîðìèðîâàííîñòè ñòîðîí âèãðàõ äâóõ ëèö ñ íåïðîòèâîïîëîæíûìè èíòåðåñàìè. − ÆÂÌ èÌÔ, 1972, ò.
12, 4, ñ. 1029-1034.272Ñïèñîê ëèòåðàòóðû[58] Êóí Ã.Ó. Ïîçèöèîííûå èãðû è ïðîáëåìà èíôîðìàöèè. Â ñá. [82],ñ. 13-40.[59] Cournot A.A. Recherches sur les principes mathematic de la théoriedes riches. − Paris, 1838.[60] Lemke C.E., Howson J.J.,Jr. Equilibrium points of bimatrix games.Proc. Nat. Acad.
Sci. U.S.A., 1961, v. 47, p. 1657-1662.[61] Ëüþñ Ð. è Ðàéôà Õ. Èãðû è ðåøåíèÿ. Ââåäåíèå è êðèòè÷åñêèéîáçîð. − Ì.: Èíîñòðàííàÿ ëèòåðàòóðà, 1961.[62] Myles G. Public economics. Cambridge, 1996.[63] Ìàê-Êèíñè Äæ. Ââåäåíèå â òåîðèþ èãð. − Ì.: Ôèçìàòãèç, 1960.[64] ÌàêÊîííåëë Ê.Ð., Áðþ Ñ.Ë.
Ýêîíîìèêñ. − Ì.: ÈÍÔÐÀ-Ì,2003.[65] Ìàòðè÷íûå èãðû. Ñá. ñòàòåé ïîä ðåä. Í.Í.Âîðîáüåâà. − Ì.: Ôèçìàòãèç, 1961.[66] Ìîâøîâè÷ Ñ.Ì., Áîãäàíîâà Ì.Ñ., Êðóïåíèíà Ã.À. Ðàöèîíàëèçàöèÿ ñòðóêòóðû íàëîãîâ â ïåðåõîäíîé ýêîíîìèêå Ðîññèè. − Ì.:Ðîññèéñêàÿ ýêîíîìè÷åñêàÿ øêîëà, 1997.[67] Ìîðîçîâ Â.Â., Ñóõàðåâ À.Ã., Ôåäîðîâ Â.Â. Èññëåäîâàíèå îïåðàöèé â çàäà÷àõ è óïðàæíåíèÿõ. − Ì.: Âûñøàÿ øêîëà, 1986.[68] Ìîðîçîâ Â.Â., Àúçàìõóæàåâ Ì.Õ.
Î ïîèñêå äåëåæåé äèñêðåòíîé êîîïåðàòèâíîé èãðû.  ñá. "Ïðèìåíåíèå âû÷èñëèòåëüíûõñðåäñòâ â íàó÷íûõ èññëåäîâàíèÿõ è ó÷åáíîì ïðîöåññå."− Ì.:Èçä-âî Ìîñê. óí-òà, 1992, ñ. 49-62.[69] Moreno D., Ubeda L. Capacity precommitment and pricecompetition yield Cournot outcomes. Universudad Crlos 3 deMadrid, Economic Series, 2001, 08 WP 01-44.[70] Ìîöêèí Ò.Ñ.,Ðàéôà Õ., Òîìïñîí Äæ.Ë., Òðîëë Ð.Ì. Ìåòîä äâîéíîãî îïèñàíèÿ.  ñá.
[65], ñ. 81-109.[71] Ìóëåí Ý. Òåîðèÿ èãð. Ñ ïðèìåðàìè èç ìàòåìàòè÷åñêîé ýêîíîìèêè. − Ì.: Ìèð, 1985.273Ñïèñîê ëèòåðàòóðû[72] Íåéìàí Äæ. ôîí. , Ìîðãåíøòåðí Î. Òåîðèÿ èãð è ýêîíîìè÷åñêîåïîâåäåíèå. − Ì.: Íàóêà, 1970.[73] Íåéìàí Äæ. ôîí. Ê òåîðèè ñòðàòåãè÷åñêèõ èãð.  ñá. [65], c. 174204.[74] Neumann J. von. Über ein ökonomisches Gleichungssystem und eineVerallgemeinerung des Browerschen Fixpunktsatzes.
Erg. Math.Kolloqu., 1937, B. 8, S. 73-83.[75] Íèêàéäî Õ., Èñîäà Ê. Çàìåòêà î áåñêîàëèöèîííûõ âûïóêëûõèãðàõ, Â ñá. [9], ñ. 449-458.[76] Íýø Äæ. Áåñêîàëèöèîííûå èãðû. Â ñá. [65] , c. 205-221.[77] Novchek W. On the existence of Cournot equilibrium. Review ofEconomic Studies, 1985, v. 52, p. 85-98.[78] Îóýí Ã. Òåîðèÿ èãð. − Ì.: Ìèð, 1971.[79] Ïàðòõàñàðàòõè Ò., Ðàãõàâàí Ò. Íåêîòîðûå âîïðîñû òåîðèè èãðäâóõ ëèö. − Ì.: Ìèð, 1974.[80] Ïåòðîâ À.À.Á, Ïîñïåëîâ È.Ã., Øàíàíèí À.À.