Главная » Просмотр файлов » Вычислительные методы алгебры и оценивания. И.В. Семушкин (2011)

Вычислительные методы алгебры и оценивания. И.В. Семушкин (2011) (1185350), страница 29

Файл №1185350 Вычислительные методы алгебры и оценивания. И.В. Семушкин (2011) (Вычислительные методы алгебры и оценивания. И.В. Семушкин (2011).pdf) 29 страницаВычислительные методы алгебры и оценивания. И.В. Семушкин (2011) (1185350) страница 292020-08-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 29)

Построить U DU T -разложение матрицы P (U — верхняя треугольнаяматрица с единицами на главной диагонали, D — диагональная матрица с положительными элементами на диагонали).б. С помощью U DU T -разложения матрицы P решить системуP x = b,c вектором b = (19, −9, −5, −5)T .в. С помощью разложения и решения системы найти величину квадратичной формы J(x) = xT P x, где x — решение из п.б.Задача 23Для матрицывыполнить следующее:1A =  −2−22 66 −7 7 1а. Построить QR-разложение матрицы A с помощью ортогональных преобразований (Хаусхолдера / Гивенса / ГШО / МГШО).б. С помощью QR-разложения матрицы A решить систему линейныхуравненийAx = b,где вектор b = (5, −15, −8)T .1859 Фонд задачв.

С помощью QR-разложения найти матрицу A−1 и вычислить числоMA обусловленности матрицы A в норме k·k∞ = max {|xi|}, x ∈ R3 .i=1,2,3Задача 24Для матрицывыполнить следующее:1A=−2−22 36 −1 7 7а. Построить QR-разложение матрицы A с помощью ортогональных преобразований (Хаусхолдера / Гивенса / ГШО / МГШО).б. С помощью QR-разложения матрицы A решить систему линейныхуравненийAx = b,где вектор b = (6, 3, 12)T .в. С помощью QR-разложения найти матрицу A−1 и вычислить числоMA обусловленности матрицы A в норме k·k∞ = max {|xi|}, x ∈ R3 .i=1,2,3Задача 25Для матрицывыполнить следующее:1A=−2−22 −56 57 −3а.

Построить QR-разложение матрицы A с помощью ортогональных преобразований (Хаусхолдера / Гивенса / ГШО / МГШО).б. С помощью QR-разложения матрицы A решить систему линейныхуравненийAx = b,где вектор b = (8, −1, 8)T .1869.4 Задачи для контрольных заданий и экзаменав. С помощью QR-разложения найти матрицу A−1 и вычислить числоMA обусловленности матрицы A в норме k·k∞ = max {|xi|}, x ∈ R3 .i=1,2,3Задача 26Для матрицывыполнить следующее:1A=−2−22 66 37 −3а. Построить QR-разложение матрицы A с помощью ортогональных преобразований (Хаусхолдера / Гивенса / ГШО / МГШО).б.

С помощью QR-разложения матрицы A решить систему линейныхуравненийAx = b,где вектор b = (5, −5, −12)T .в. С помощью QR-разложения найти матрицу A−1 и вычислить числоMA обусловленности матрицы A в норме k·k∞ = max {|xi|}, x ∈ R3 .i=1,2,3Задача 27Для матрицывыполнить следующее:1A=−2−22 56 −5 7 3а. Построить QR-разложение матрицы A с помощью ортогональных преобразований (Хаусхолдера / Гивенса / ГШО / МГШО).б. С помощью QR-разложения матрицы A решить систему линейныхуравненийAx = b,где вектор b = (6, 3, 12)T .1879 Фонд задачв. С помощью QR-разложения найти матрицу A−1 и вычислить числоMA обусловленности матрицы A в норме k·k∞ = max {|xi|}, x ∈ R3 .i=1,2,3Задача 28Для матрицывыполнить следующее:1A=−2−2267119а.

Построить QR-разложение матрицы A с помощью ортогональных преобразований (Хаусхолдера / Гивенса / ГШО / МГШО).б. С помощью QR-разложения матрицы A решить систему линейныхуравненийAx = b,где вектор b = (−1, −3, 4)T .в. С помощью QR-разложения найти матрицу A−1 и вычислить числоMA обусловленности матрицы A в норме k·k∞ = max {|xi|}, x ∈ R3 .i=1,2,3Задача 29Для матрицывыполнить следующее:1A=−2−22 76 −9 7 −1а.

Построить QR-разложение матрицы A с помощью ортогональных преобразований (Хаусхолдера / Гивенса / ГШО / МГШО).б. С помощью QR-разложения матрицы A решить систему линейныхуравненийAx = b,где вектор b = (−8, 1, −8)T .1889.4 Задачи для контрольных заданий и экзаменав. С помощью QR-разложения найти матрицу A−1 и вычислить числоMA обусловленности матрицы A в норме k·k∞ = max {|xi|}, x ∈ R3 .i=1,2,3Задача 30Для матрицывыполнить следующее:1A=−2−22 −36 17 −7а. Построить QR-разложение матрицы A с помощью ортогональных преобразований (Хаусхолдера / Гивенса / ГШО / МГШО).б.

С помощью QR-разложения матрицы A решить систему линейныхуравненийAx = b,где вектор b = (6, 3, 12)T .в. С помощью QR-разложения найти матрицу A−1 и вычислить числоMA обусловленности матрицы A в норме k·k∞ = max {|xi|}, x ∈ R3 .i=1,2,3Задача 31Для матрицывыполнить следующее:1A=−2−22 −66 77 −1а. Построить QR-разложение матрицы A с помощью ортогональных преобразований (Хаусхолдера / Гивенса / ГШО / МГШО).б. С помощью QR-разложения матрицы A решить систему линейныхуравненийAx = b,где вектор b = (7, 1, 10)T .1899 Фонд задачв. С помощью QR-разложения найти матрицу A−1 и вычислить числоMA обусловленности матрицы A в норме k·k∞ = max {|xi|}, x ∈ R3 .i=1,2,3Задача 32Для матрицывыполнить следующее:1A=−2−22 −26 −1 7 −9а.

Построить QR-разложение матрицы A с помощью ортогональных преобразований (Хаусхолдера / Гивенса / ГШО / МГШО).б. С помощью QR-разложения матрицы A решить систему линейныхуравненийAx = b,где вектор b = (1, 3, −4)T .в. С помощью QR-разложения найти матрицу A−1 и вычислить числоMA обусловленности матрицы A в норме k·k∞ = max {|xi|}, x ∈ R3 .i=1,2,3Задача 33Для матрицывыполнить следующее:1A=−2−22 −76 97 1а.

Построить QR-разложение матрицы A с помощью ортогональных преобразований (Хаусхолдера / Гивенса / ГШО / МГШО).б. С помощью QR-разложения матрицы A решить систему линейныхуравненийAx = b,где вектор b = (10, −5, 4)T .1909.4 Задачи для контрольных заданий и экзаменав. С помощью QR-разложения найти матрицу A−1 и вычислить числоMA обусловленности матрицы A в норме k·k∞ = max {|xi|}, x ∈ R3 .i=1,2,3Задача 34Для матрицывыполнить следующее:1A=−2−23 −64 −3 5 3а. Построить QR-разложение матрицы A с помощью ортогональных преобразований (Хаусхолдера / Гивенса / ГШО / МГШО).б. С помощью QR-разложения матрицы A решить систему линейныхуравненийAx = b,где вектор b = (8, 9, 4)T .в. С помощью QR-разложения найти матрицу A−1 и вычислить числоMA обусловленности матрицы A в норме k·k∞ = max {|xi|}, x ∈ R3 .i=1,2,3Задача 35Для матрицывыполнить следующее:1A=−2−23 34 −1 5 7а. Построить QR-разложение матрицы A с помощью ортогональных преобразований (Хаусхолдера / Гивенса / ГШО / МГШО).б.

С помощью QR-разложения матрицы A решить систему линейныхуравненийAx = b,где вектор b = (5, 5, 14)T .1919 Фонд задачв. С помощью QR-разложения найти матрицу A−1 и вычислить числоMA обусловленности матрицы A в норме k·k∞ = max {|xi|}, x ∈ R3 .i=1,2,3Задача 36Для матрицывыполнить следующее:1A=−2−23 −54 55 −3а. Построить QR-разложение матрицы A с помощью ортогональных преобразований (Хаусхолдера / Гивенса / ГШО / МГШО).б.

С помощью QR-разложения матрицы A решить систему линейныхуравненийAx = b,где вектор b = (−7, −1, −10)T .в. С помощью QR-разложения найти матрицу A−1 и вычислить числоMA обусловленности матрицы A в норме k·k∞ = max {|xi|}, x ∈ R3 .i=1,2,3Задача 37Для матрицывыполнить следующее:1A=−2−23 64 35 −3а. Построить QR-разложение матрицы A с помощью ортогональных преобразований (Хаусхолдера / Гивенса / ГШО / МГШО).б. С помощью QR-разложения матрицы A решить систему линейныхуравненийAx = b,где вектор b = (2, 1, −6)T .1929.4 Задачи для контрольных заданий и экзаменав. С помощью QR-разложения найти матрицу A−1 и вычислить числоMA обусловленности матрицы A в норме k·k∞ = max {|xi|}, x ∈ R3 .i=1,2,3Задача 38Для матрицывыполнить следующее:1A=−2−23 54 −5 5 3а.

Построить QR-разложение матрицы A с помощью ортогональных преобразований (Хаусхолдера / Гивенса / ГШО / МГШО).б. С помощью QR-разложения матрицы A решить систему линейныхуравненийAx = b,где вектор b = (−1, 7, 0)T .в. С помощью QR-разложения найти матрицу A−1 и вычислить числоMA обусловленности матрицы A в норме k·k∞ = max {|xi|}, x ∈ R3 .i=1,2,3Задача 39Для матрицывыполнить следующее:1A=−2−2345219а. Построить QR-разложение матрицы A с помощью ортогональных преобразований (Хаусхолдера / Гивенса / ГШО / МГШО).б. С помощью QR-разложения матрицы A решить систему линейныхуравненийAx = b,где вектор b = (−4, −7, −16)T .1939 Фонд задачв.

С помощью QR-разложения найти матрицу A−1 и вычислить числоMA обусловленности матрицы A в норме k·k∞ = max {|xi|}, x ∈ R3 .i=1,2,3Задача 40Для матрицывыполнить следующее:1A=−2−23 64 −7 5 1а. Построить QR-разложение матрицы A с помощью ортогональных преобразований (Хаусхолдера / Гивенса / ГШО / МГШО).б. С помощью QR-разложения матрицы A решить систему линейныхуравненийAx = b,где вектор b = (8, −1, 8)T .в. С помощью QR-разложения найти матрицу A−1 и вычислить числоMA обусловленности матрицы A в норме k·k∞ = max {|xi|}, x ∈ R3 .i=1,2,3Задача 41Для матрицывыполнить следующее:1A=−2−23 74 −9 5 −1а. Построить QR-разложение матрицы A с помощью ортогональных преобразований (Хаусхолдера / Гивенса / ГШО / МГШО).б.

Характеристики

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее