Миронов В.В. Современные философские проблемы естественных_ технических и социогуманитарных наук (2006) (1184475), страница 128
Текст из файла (страница 128)
Имитационное моделирование на ЭВМ позволяет исследовать сложные внутренние взаимодействия в системе, изучать влияние структурных изменений на ее функционирование, а также влияние изменений в окружающей среде, для чего в модель вносят соответствующие трансформации и наблюдают их воздействие на поведение системы.
На основе полученных в результате моделирования данных разрабатываются предложения по улучшению существующей структуры системы или созданию совершенно новой ее структуры. Влияние этих нововведений можно проверить с помощью имитации еше до их практического внедрения для предварительной проверки новых стратегий и решений, предсказания на модели узких мест, имеющихся в системе, описания и про- злв Философские проблемы информатики 455 гнозирования на ней возможных путей естественного развития имитируемой системы в различных условиях и обоснования выбора вариантов ее структуры прн соответствующих изменениях этих условий. Это позволяет автоматизированным способом формировать и распознавать структуры, оптимизировать их по заданному критерию, осуществлять имитацию динамики системы на этих структурах и оценивать качество вариантов моделей проектируемой системы.
Первоначально модель выдается необязательно в строго формализованном виде, а на содержательном уровне — в языке, наиболее приближающемся к естественному поэтому такую модель часто называют вербальной. На следующем этапе она должна быть представлена уже в виде математической модели с помощью различных языков программирования. Экспериментирование с моделью на компьютере заключается в изменении условий функционирования объекта моделирования, генерации вариантов модели, предсказывающих поведение системы в гипотетически изменившихся условиях.
Выбор наиболее пригодного для данных условий варианта модели и оптимизация этого варианта являются проектными задачами и находятся в прямой зависимости от целей исследования нли проектирования. Такой выбор диктуется прежде всего содержательными критериями, т.е. интерпретацией модели, заключающейся в определении области и границ, в которых результаты, полученные на модели, являются справедливыми для исследуемой или проектируемой системы.
Наряду с формализацией имитационные модели выполняют также важную эвристическую функцию, особенно при моделировании динамики различных исследуемых процессов. Даже в случае достаточно тривиальных моделей компьютерное моделирование дает возможность представить результаты исследования яснее, проще и быстрее. Постепенно мышление приучается работать с такого рода моделями, не обращаясь каждый раз к их интерпретации на уровне первичной реальности, и эта вторичная реальность, в конечном счете, становится постоянным репрезентантом первичной. Оперирующий цифрами и значками на экране монитора банковский служащий, играя на электронной бирже, не видит реальных процессов на рынке ценных бумаг, но точно отслеживает их в пространстве идеальных сущностей, скрытых в компьютерной оболочке.
Его действия могут привести тем не менее к вполне реальным последствиям для конкретного предприятия, акции которого он покупает и перепродает, для банка, в котором он работает, и для его собственного существования. Однако он не имеет представления о тех технологических процессах, которые протекают на производственных предприятиях, о работавших там людях, а часто и о продуктах, которые циркулируют на рынке. Он оперирует абстракциями, не осязая даже денежных банкнот, хотя через него могут проходить за несколько минут миллионы денежных единиц. Именно таким образом функцио- 456 3. Философии техники и технических наук пирует так называемая вирхнуальная реальнослхь, которая хотя и не является реальным объектом, но может вызывать реальные эффекты. И хотя, несомненно, развитие новых информационных технологий открывает невиданные до тех пор возможности для реального действования в виртуальной реальности, сама проблема известна со времен Античности.
Когда мы задаемся вопросом, что значит существовать в действительности, то на ум приходит ответ древнегреческих атомистов; на самом деле существуют не видимые и воспринимаемые нашими органами чувств вешн, а лишь атомы и пустота, постигаемые разумом. С помощью современных информационных технологий можно придать любой виртуальной реальности субстанциальность, заставляя пользователя воспринимать ее как реально существующую, причем действия в виртуальной реальности благодаря этим технологиям действительно мо~ ут производить реальные эффекты.
Можно предположить, что оператор-ученик, находясь в компьютерном классе, вообще не имеет представления о том, как варится сталь, а на экране монитора высвечиваетси абстрактная картинка. В компьютер тем не менее внесены все физические, химические и тому подобнзие параметры реального технологического процесса, и их изменение меняет эту картинку. Сталевар в цехе отдает команды, когда и какие действия нужно совершать, чтобы на выходе получился определенный продукт с желаемыми параметрами, и эти команды, передаваемые по каналам связи, ученик соотносит с изменениями на видимой им картинке.
Постепенно он и сам научится вовремя отдавать нужныс команды через компьютер механизмам, работающим в цехе, не видя реального физического или химического процесса, происходящего там. Но, в сущности, и сталевар видит не эти процессы, а лишь фиксирует их внешние признаки, соотнесенные с опытом и дополненные профессиональным научным образованием, соединяя их в некоторую картину реальности, в соответствиии с которой он и строит свои действия. Таким образом, между ним и оператором, сидящим в компьютерном классе, не существует большой разницы, а продукт может быть идентичным и вполне ощутимо реальным. В отличие от них, научно образованный инженер проник в физическую, химическую и тому подобную суть происходящих процессов.
Мастер-практик, работая якобы без всякой науки и основываясь на многолетнем практическом опыте, измеряет заданные наукой параметры и, как и инженер, пользуется научными понятиями и представлениями в рамках той научной картины мира, которую он усвоил в ходе общего образования, принимая ее за первую реальность, точно так же, как воспринимал ремесленник-кузнец в древности мифологическую картину мира. Для последнего рецепт приготовления стали так же построен по законам мифа, как для современного техника — по законам науки. Для него таким же естественным является объяснение, почему 3 2. Философские проблемы информатики 457 закаливание стали должно осуществляться в золе шкуры черного козла и в моче рыжего мальчика, поскольку в черном и рыжем скрыт сокровенный символ потусторонних дьявольских сил, на балансировании между которыми и божественными силами и строится весь технологический процесс, как для современного техника объяснение этого связывается с необходимостью добавления органических углеродных соединений и мочевины.
Миф и был той первой реальностью, в которой жили древние люди, точнее, истинной ее картиной, в соответствии с которой они достаточно успешно действовали, а не сказкой, не имеющей ничего общего с реальной действительностью, в качестве которой миф предстает перед современным исследователем. Ритульные условно-символические действия воспринимались как вполне реальные, направленные на достижение конкретных практических результатов.
Собственно именно так и в современной технике первичная реальность, данная нам в ощущениях, восприятиях и в повседневном социальном опыте, замещается научной картиной мира. Мы не в состоянии почувствовать или увидеть электромагнитные волны, но верим построенной Герцем на основе электродинамической теории Фарадея — Максвелла и подтвержденной им опытами картине распределения электромагнитных волн как истинной, а инженеры и техники строят на основе этих представлений различные приборы, например радиоприемники, которые стали обычными предметами нашего сопиального опыта.
Мы воспринимаем лишь идущие из них звуки, издаваемые за много тысяч километров, представляя себе в соответствии с научной картиной электромагнитных взаимодействий, как радиоволны доносят до нас расшифрованные радиоприемником звуки знакомого голоса или музыки. Но с таким же успехом мы можем представить себе эту картину с помощью альтернативной теории Ампера — Вебера, основанной не на волновом, а на корпускулярном принципе. То же относится и к визуальным представлениям.
Со времен В. Гнльбсрта, предложившего использовать навигационные инструменты, разработанные им на основе представления о магнитном поле Земли, которого мы без специальных приборов не видим, ориентация в море основывается не на ощущениях капитана, соотносящего положение сулиа в пространстве с вндимыми естественными ориентирами, а с абстрактными показаниями магнитных приборов.
Не имеет ли дело современный навигатор в таком случае с виртуальной реальностью, подкрепленной научной картиной мира? Даже рассматривая в телескоп невидимые до тех пор простым глазом звезды, Галилей отождествляет полученное изображение с первой реальностью лишь с помощью особой научной теории — теории перспективы, развитой его предшественниками. Любой научный прибор построен и функционирует на основе научных представлений, а связь этих представлений с реальностью подтверждена соответствующей теорией, в которой, например, 458 3.
Философия техники н технических наук визуальная модель опосредована математической схемой, ничем не отличающейся от компьютерной модели, где алгоритмические цепочки математических схем, реализованные в конкретных компьютерных программах, гарантируют нам, что изображение на экране монитора соответствует реальности. Таким образом, виртуальная реальность становится не только средством исследования реального мира, но иногда и его подмены и может быть определена как модельное отображение действительной реальности с помощью технических средств, создающее иллюзию этой реальности, Совершенно новые аспекты виртуальной реальности раскрылись после возникновения глобальной сети Интернета. Виртуальная реальность проникает сегодня не только в сферу профессиональной деятельности, но и в повседневную жизнь.
Например, в случае подключения так называемых интеллектуальных бытовых приборов к сети Интернета, открываются новые возможности управления и пользования ими, но одновременно возрастает и зависимость от этой виртуальной реальности. Для обычного пользователя часто просто непостижимо, как функционирует вся эта электроника, начиная от отопления и кончая телевизионными и коммуникационными устройствами. Человек становится беспомошным, если окружающая его виртуальная реальность исчезает и он остается один на один с первичной реальностью, которая не поддается управлению. Эту ситуацию лучше всего иллюстрируют отказы компьютерных систем, управляющих сложными сервисными обьектами, например аэропортом. В этом случае служащие аэропорта не в состоянии вообще оценить, что же на самом деле происходит, если представленная системой информация не соответствует действительности, например из-за сбоя в работе программного обеспечения, поскольку они обучены работать лишь с виртуальной реальностью, ставшей для них первичной.