Миронов В.В. Современные философские проблемы естественных_ технических и социогуманитарных наук (2006) (1184475), страница 127
Текст из файла (страница 127)
Позднее Берталанфи была сформулирована теория открьпых систем, обмениваюшихся с окружающей средой энергией и материей, которая позволила объяснить процессы роста, приспособления, регуляции и равновесие биологических систем и легла в основу его варианта общей теории систем. Одновременно Винер развил кибернетический подход, исследуя общность процессов регулирования и информационного обмена и у животных, и у машин, считая, что автоматы взаимодействуют, как и организмы, с окружающей средой, т.е. могут принимать и запоминать внешние образы, имея датчики и эквивалент нервной системы, и даже корректировать свою деятельность, а потому могут быть объединены в одну обшую теорию — кибернетику. Согласно этой теории, механизм обратной связи является основой целенаправленного поведения как созданной человеком машины, так и живого организма и социальной системы. Берталанфи возражал ему, считая, что в данном случае технические системы являются открытыми для обмена информацией, а не энергией и материей, как у органических систем.
Можно, однако, указать несколько таких сходств этих дисциплин. Например, иерархическое рассмотрение, которое дополняется описанием элементов-кирпичиков, составляюших систему, и связей между ними, отвлечение от вещественного субстрата материальных процессов и рассмотрение их функциональных зависимостей, а также междисциплинарность и методологическая направленность. И в кибернетике, и в системном подходе исследователь первоначально абстрагируется от внутренних свойств системы, анализируя только ее внешние связи (принцип черного ящика»).
В то же время их нельзя и отождествлятгк предметом исследования кибернетики являются системы управления, сфера же системных исследований распространяется на любые системы; кибернетика рассматривает информационные аспекты систем, а системный подход— любые их аспекты и срезы. Перенесение кибернетических принципов, взятых из биологии и обобшенных в кибернетике, на мир неживой при- 3 Философия техники и зехническил наук роды, а затем и общество, привело к развитию подхода к исследованию любых систем как самоорганизуюшихся, что, в свою очередь, породило новый, синергетический подход, в том числе и в информатике.
Основатель синергетики Г Хакен' отмечает, что именно из объяснения чрезвычайно сззожных биологических явлений, например эволюпии и зарождения жизни, возникает вопрос, можно ли обнаружить процессы самоорганизации в гораздо более простых системах неживой природы. Наукой раскрыто множество примеров физических и химических систем, в которых отчетливо прослеживаются процессы, сходные с процессами в живых организмах при переходе от неупорядоченного к упорядоченному состоянию.
В противоположность созданным человеком машинам, которые конструируются для вьшолнсния специальных функций, эти структуры развиваются спонтанно — самоорган изуются, причем способ функционирования таких систем подчиняется одним и тем же основополагающим принципам, независимо от того, относятся ли они к области физики„химии, биологии или даже социологии.
В общем виде сначала имеется некоторая система в определенном состоянии и при определенных контрольных внешних условиях. Если изменить значение контрольного параметра, то это прежнее состояние может стать нестабильным и должно уступить место новому состоянию, которое имеет более высокую степень порядка. При этом система сама проверяет формы движения, находящиеся в состоянии конкуренции.
Синергетический подход успешно используется сегодня в самых различных областях науки, техники, искусства, медицине и культурологии. В информатике, как считасг Чернавский, с точки зрения синергетики наиболее конструктивным является определение информации как запомненного выбора одного варианта из нескольких возможных и равноправных. К этому добавляется уточнение сопутствующих ему понятий, таких, как введенное еше Шенноном понятие количества информации, затем ее осмысленность, условность и в особенности ценность.
С точки зрения синергетики причиной спонтанного возникновения информации и эволюции ее ценности является неустойчивость. Таким образом, можно констатировать смешение акцентов в информатике с технических компонентов — «хардвэр» — на развитие программных аспектов — есофтвэр» — и проектирование информационных потоков в сложных системах, замыкающихся на человеческие компоненты. Однако человеческие компоненты не рассматриваются более лишь как элементы человеко-машинных систем, поскольку в этом случае теряется решающий социальный аспект. Речь идет фактически о реорганизации социотехнических систем, где акценты явно смещаются на исследование и организацию систем человеческой деятельности, в которых ' Смл Синсргегическая парадигма. Многообразие поисков и полхолоа.
М, 2000. 453 3 2. ФилосоФскис пробасив инфориатики машинные, технические компоненты играют второстепенную роль и на первый план выходит системный менеджмент и проектирование организационных структур. С этим связаны, например, попытки использовать представления о самореферентных и аутопоейтических системах, развитые в теории систем Лумана, для перехода от ставших уже тралиционными и малопродуктивными в этой области системно-кибернетических представлений к пониманию социотехнической системы.
Смысл этого нового подхода заключается в том, что система рассматривается с энергетической точки зрения как открытая, а ее внутренние процессы и организация являются полностью закрытыми по отношению к окружающей ее среде. Поэтому аутопойетическая система репродуцируется в ходе закрытого для внешней среды рекурсивного процесса, в котором она сама воспроизводит и сохраняет свои составные части. Самореферентность системы представляет собой се способность постоянно самоопределять отношение к самой себе и дифференцировать отношения к окружающему миру, а также перманентно селектировать свои внутренние связи и элементы.
Система конструирует окружающую среду как данную реальность и через эту процедуру утвержлает и себя саму как реально существующую. Одним из центральных понятий лумановской теории систем является понятие самонаблюдения. Система только тогда существует, когда она сама себя наблюдает, т.е. самоидентифицирует себя, отделяя себя от окружающей среды. Кроме того, существует некий «наблюдатель второго порядка», способный понять, что самонаблюдение отграничивает то, что лругие системы (в качестве «наблюдателей первого порядка» или «внешних наблюдателейа) осознают как мир, в котором они существуют.
Многократное повторение процедуры дифференциации системы и окружающей срепы, направленное внутрь данной системы, ведет к выделению в ней иерархии подсистем и одновременно к редукции сложности этой системы. Аутопойесис в данном контексте означает самоорганизацию, самоконституирование и саморепродукцию системы через построение подсистем. Таким образом, теория систем Лумана может рассматриваться как новая парадигма теории систем, основывающаяся на синтезе идей обгцей теории систем Берталанфи и синергетического подхода и примененная к анализу развития самоорганизуюшихся социальных систем. 3.2.2. Информатика как междисциплинарная наука о функционировании и развитии информационно-коммуникативной среды и ее технологизации посредством компьютерной техники Центральное место в информатике занимает компьютерное моделирование.
Современный имитационный эксперимент коренным образом отличается от эксперимента в классической естественной науке, основ- 454 3. ФнчосоФиа техники и технических наук ная цель которого — воспроизведение в материализованном виде идеализированных экспериментальных ситуаций, направленное на подтверждение отдельных следствий из общих теоретических положений. В неклассическом естествознании важную роль сегодня играет идеализированный компьютерный эксперимент, позволяющий проимитировать, проанализировать и рассчитать различные варианты возможного поведения исследуемой сложной системы.
Незаменимым компьютерный эксперимент становится также в современной инженерной деятельности и проектировании. Моделирование функционирования системы на ЭВМ позволяет уже на ранних этапах проектирования представить систему как целостный объект, а анализируя такую модель, можно принимать научно обоснованные решения по выбору наиболее подходящей реализации отдельных компонентов системы с точки зрения их взаимосвязи и взаимного функционирования, учесть заранее различные факторы, влияющие на систему в целом, и условия ее функционирования, выбрать наиболее оптимальную структуру и наиболее эффективный режим ее работы.
Для сложных человеко-машинных систем такой анализ невыполним средствами традиционного моделирования, и ему обязательно требуется компьютерная поддержка, поскольку без использования современной вычислительной техники просто невозможно учесть те многочисленные данные о сложной системе, которые необходимы исследователю и проектировщику, особенно если иметь в виду их разнородность, связанную с использованием знаний различных дисциплин и участием в создании таких систем разнообразных специалистов. Такая автоматизация имитационного моделирования направлена на расширение возможностей исследователя и проектировщика для прогнозирования поведения системы в различных меняющихся условиях и выбора адекватных этим условиям решений. Создание диалоговых систем позволяет значительно расширить аналитические средства, повысить качество и обоснованность решений проектных и исследовательских задач и существенно сократить время их выработки.