Белов- БЖД (1183106), страница 13
Текст из файла (страница 13)
Параметры микроклимата воздушной среды, которые обусловливают оптимальный обмен веществ в организме и при которых нет неприятных ощущений и напряженности системы терморегуляции, называются комфортными или оптимальными. Зона, в которой окружающая среда полностью отводит теплоту, выделяемую организмом и нет напряжения системы терморегуляции, называется зоной комфорта. Условия, при которых нормальное тепловое состояние человека нарушается, называются дискомфортными. При незначительной напряженности системы терморегуляции и небольшой дискомфортности устанавливаются допустимые метеорологические условия.
Гигиеническое нормирование параметров микроклимата производственных помещений. Нормы производственного микроклимата установлены системой стандартов безопасности труда ГОСТ 12.1.005–88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны». Они едины для всех производств и всех климатических зон с некоторыми незначительными отступлениями.
В этих нормах отдельно нормируется каждый компонент микроклимата в рабочей зоне производственного помещения: температура, относительная влажность, скорость воздуха в зависимости от способности организма человека к акклиматизации в разное время года, характера одежды, интенсивности производимой работы и характера тепловыделений в рабочем помещении.
Для оценки характера одежды (теплоизоляции) и акклиматизации организма в разное время года введено понятие периода года. Различают теплый и холодный период года. Теплый период года характеризуется среднесуточной температурой наружного воздуха +10 °С и выше, холодный –ниже +10 °С
При учете интенсивности труда все виды работ, исходя из общих энергозатрат организма, делятся на три категории: легкие, средней тяжести и тяжелые. Характеристику производственных помещений по категории выполняемых в них работ устанавливают по категории работ, выполняемых 50 % и более работающих в соответствующем помещении.
К легким работам (категории I) с затратой энергии до 174 Вт относятся работы, выполняемые сидя или стоя, не требующие систематического физического напряжения (работа контролеров, в процессах точного приборостроения, конторские работы и др.). Легкие работы подразделяют на категорию Iа (затраты энергии до 139 Вт) и категорию Iб (затраты энергии 140... 174 Вт). К работам средней тяжести (категория II) относят работы с затратой энергии 175...232 Вт (категория IIа) и 233...290 Вт (категория IIб). В категорию IIа входят работы, связанные с постоянной ходьбой, выполняемые стоя или сидя, но не требующие перемещения тяжестей, в категорию IIδ –работы, связанные с ходьбой и переноской небольших (до 10 кг) тяжестей (в механосборочных цехах, текстильном производстве, при обработке древесины и др.). К тяжелым работам (категория III) с затратой энергии более 290 Вт относят работы, связанные с систематическим физическим напряжением, в частности с постоянным передвижением, с переноской значительных (более 10 кг) тяжестей (в кузнечных, литейных цехах с ручными процессами и др.).
По интенсивности тепловыделений производственные помещения делят на группы в зависимости от удельных избытков явной теплоты. Явной называется теплота, воздействующая на изменение температуры воздуха помещения, а избытком явной теплоты–разность между суммарными поступлениями явной теплоты и суммарными теплопотерями в помещении. Явная теплота, которая образовалась в пределах помещения, но была удалена из него без передачи теплоты воздуху помещения (например, с газами от дымоходов или с воздухом местных отсосов от оборудования), при расчете избытков теплоты не учитывается. Незначительные избытки явной теплоты –это избытки теплоты, не превышающие или равные 23 Вт на 1 м3 внутреннего объема помещения. Помещения со значительными избытками явной теплоты характеризуются избытками теплоты более 23 Вт/м3.
Интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать 35 Вт/м2 при облучении 50 % поверхности человека и более, 70 Вт/м2–при облучении 25...50 % поверхности и 100 Вт/м2–при облучении не более 25 % поверхности тела.
Интенсивность теплового облучения работающих от открытых источников (нагретого металла, стекла, открытого пламени и др.) не должна превышать 140 Вт/м2, при этом облучению не должно подвергаться более 25 % поверхности тела и обязательно использование средств индивидуальной защиты.
В рабочей зоне производственного помещения согласно ГОСТ 12.1.005–88 могут быть установлены оптимальные и допустимые микроклиматические условия. Оптимальные микроклиматические условия – это такое сочетание параметров микроклимата, которое при длительном и систематическом воздействии на человека обеспечивает ощущение теплового комфорта и создает предпосылки для высокой работоспособности. Допустимые микроклиматические условия – это такие сочетания параметров микроклимата, которые при длительном и систематическом воздействии на человека могут вызвать напряжение реакций терморегуляции и которые не выходят за пределы физиологических приспособительных возможностей. При этом не возникает нарушений в состоянии здоровья, не наблюдаются дискомфортные теплоощущения, ухудшающие самочувствие и понижение работоспособности. Оптимальные параметры микроклимата в производственных помещениях обеспечиваются системами кондиционирования воздуха, а допустимые параметры – обычными системами вентиляции и отопления.
1.4. ПРОФИЛАКТИКА НЕБЛАГОПРИЯТНОГО ВОЗДЕЙСТВИЯ МИКРОКЛИМАТА
Методы снижения неблагоприятного влияния производственного микроклимата регламентируются «Санитарными правилами по организации технологических процессов и гигиеническими требованиями к производственному оборудованию» и осуществляются комплексом технологических, санитарно-технических, организационных и медико-профилактических мероприятий.
Ведущая роль в профилактике вредного влияния высоких температур, инфракрасного излучения принадлежит технологическим мероприятиям: замена старых и внедрение новых технологических процессов и оборудования, способствующих оздоровлению неблагоприятных условий труда (например, замена кольцевых печей для сушки форм и стержней в литейном производстве туннельными; применение штамповки вместо поковочных работ; применение индукционного нагрева металлов токами высокой частоты и т.д.) Внедрение автоматизации и механизации дает возможность пребывания рабочих вдали от источника радиационной и конвекционной теплоты.
К группе санитарно-технических мероприятий относится применение коллективных средств защиты: локализация тепловыделений, теплоизоляция горячих поверхностей, экранирование источников либо рабочих мест; воздушное душирование, радиационное охлаждение, мелкодисперсное распыление воды; общеобменная вентиляция или кондиционирование воздуха. Общеобменной вентиляции при этом отводится ограниченная роль –доведение условий труда до допустимых с минимальными эксплуатационными затратами.
Уменьшению поступления теплоты в цех способствуют мероприятия, обеспечивающие герметичность оборудования. Плотно подогнанные дверцы, заслонки, блокировка закрытия технологических отверстий с работой оборудования–все это значительно снижает выделение теплоты от открытых источников. Выбор теплозащитных средств в каждом случае должен осуществляться по максимальным значениям эффективности с учетом требований эргономики, технической эстетики, безопасности для данного процесса или вида работ и технико-экономического обоснования. Устанавливаемые в цехе теплозащитные средства должны быть простыми в изготовлении и монтаже, удобными для обслуживания, не затруднять осмотр, чистку, смазывание агрегатов, обладать необходимой прочностью, иметь минимальные эксплуатационные расходы. Теплозащитные средства должны обеспечивать облученность на рабочих местах не более 350 Вт/м2 и температуру поверхности оборудования не выше 308 К (35 °С) при температуре внутри источника до 373 К (100 °С) и не выше 318 К (45 °С) при температурах внутри источника выше 373 К (100 °С).
Теплоизоляция поверхностей источников излучения (печей, сосудов и трубопроводов с горячими газами и жидкостями) снижает температуру излучающей поверхности и уменьшает как общее тепловыделение, так и радиационное. Кроме улучшения условий труда тепловая изоляция уменьшает тепловые потери оборудования, снижает расход топлива (электроэнергии, пара) и приводит к увеличению производительности агрегатов. Следует иметь в виду, что тепловая изоляция, повышая рабочую температуру изолируемых элементов, может резко сократить срок их службы, особенно в тех случаях, когда теплоизолируемые конструкции находятся в температурных условиях, близких к верхнему допустимому пределу для данного материала. В таких случаях решение о тепловой изоляции должно быть проверено расчетом рабочей температуры изолируемых элементов. Если она окажется выше предельно допустимой, защита от тепловых излучений должна осуществляться другими способами.
Конструктивно теплоизоляция может быть мастичной, оберточной, засыпной, из штучных изделий и смешанной. Мастичная изоляция осуществляется нанесением мастики (штукатурного раствора с теплоизоляционным наполнителем) на горячую поверхность изолируемого объекта. Эту изоляцию можно применять на объектах любой конфигурации. Оберточную изоляцию изготовляют из волокнистых материалов–асбестовой ткани, минеральной ваты, войлока и др. Устройство оберточной изоляции проще мастичной, но на объектах сложной конфигурации ее труднее закреплять. Наиболее пригодна оберточная изоляция для трубопроводов. Засыпную изоляцию применяют реже, так как необходимо устанавливать кожух вокруг изолируемого объекта. Эту изоляцию используют в основном при прокладке трубопроводов в каналах и коробах, там, где требуется большая толщина изоляционного слоя, или при изготовлении теплоизоляционных панелей. Теплоизоляцию штучными или формованными изделиями, скорлупами применяют для облегчения работ. Смешанная изоляция состоит из нескольких различных слоев. В первом слое обычно устанавливают штучные изделия. Наружный слой изготовляют из мастичной или оберточной изоляции. Целесообразно устраивать алюминиевые кожухи снаружи теплоизоляции. Затраты на устройство кожухов быстро окупаются вследствие уменьшения тепловых потерь на излучение и повышения долговечности изоляции под кожухом.
При выборе материала для изоляции необходимо принимать во внимание механические свойства материалов, а также их способность выдерживать высокую температуру. Обычно для этого применяют материалы, коэффициент теплопроводности которых при температурах 50...100 °С меньше 0,2 Вт/ (м∙°С). Многие теплоизоляционные материалы берут в их естественном состоянии, например, асбест, слюда, торф, земля, но большинство получают в результате специальной обработки естественных материалов и представляют собой различные смеси.
При высоких температурах изолируемого объекта применяют многослойную изоляцию: сначала ставят материал, выдерживающий высокую температуру (высокотемпературный слой), а затем уже более эффективный материал, с точки зрения теплоизоляционных свойств. Толщину высокотемпературного слоя выбирают с учетом того, чтобы температура на его поверхности не превышала предельную температуру следующего слоя.
Исходными данными для расчета толщины теплоизоляции являются: температура сред (t' и t// °С), разделяемых теплоизоляционной перегородкой; допустимая температура на поверхности изоляции (tд, °С) и площадь теплоизолируемой поверхности (F, м2). При расчете теплоизоляции следует придерживаться следующего порядка. Сначала устанавливают допустимые тепловые потери объекта при наличии изоляции. Затем выбирают материал изоляции и, задавшись температурой поверхности изоляции, определяют среднюю температуру последней, по которой и находят значение коэффициента теплопроводности λиз. Зная температуру на внутренней и внешней поверхностях изоляции и коэффициент теплопроводности, определяют требуемую толщину изоляции. После этого производят проверочный расчет и находят среднюю температуру изоляционного слоя и температуру на разделе поверхностей.
Тепловые потери (Вт) в условиях стационарного теплового потока в многослойной плоской перегородке
температура tm„ в стыке слоев т –1 и т
для условий стационарного потока в цилиндрической перегородке длиной l (м) из п слоев
где δиз,–толщина iго слоя перегородки, м; α' и α" – коэффициенты теплоотдачи соответственно от теплоносителя к стенке и от внешней поверхности изоляции к окружающей среде, Вт/ (м2∙С); λ –коэффициент теплопроводности i-го слоя теплоизоляции, Вт/ (м·°С); di – диаметр i-го слоя теплоизоляции, м; т –число слоев теплоизоляции.
Определение коэффициентов теплоотдачи связано с рядом трудностей. Для точных расчетов значений α следует применять формулы, приведенные в справочнике по теплопередаче. При ориентировочных расчетах термическим сопротивлением теплоотдачи от горячей жидкости к стенке и самой стенки можно пренебречь. Тогда температуру изолируемой поверхности можно принять равной температуре горячей жидкости, и теплообмен будет определяться только термическим сопротивлением изоляции и теплоотдачей от внешней поверхности изоляции к окружающей среде.