Главная » Просмотр файлов » С. Такетоми, С. Тикадзуми - Магнитные жидкости

С. Такетоми, С. Тикадзуми - Магнитные жидкости (1163253), страница 22

Файл №1163253 С. Такетоми, С. Тикадзуми - Магнитные жидкости (С. Такетоми, С. Тикадзуми - Магнитные жидкости) 22 страницаС. Такетоми, С. Тикадзуми - Магнитные жидкости (1163253) страница 222019-09-20СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 22)

136 Глава б Сносов Томаса 115). Назначение данной методики в том, чтобы приготовить магнитную жидкость с коллоидными частицами кобальта. Процесс сводится к тому, что Соз(СО)з подвергают термическому разложению в толуоле, содержащем сополимер метилметакрилата, этилакрилата и винилпирролзшона.

В результате Сох(СО)з выделяет чистый Со в виде ультрамикроскопических частиц. Их пептизируют в толуоле, получая таким образом магнитную жидкость. 6.5. РАЗЛОЖЕНИЕ ПОД ДЕЙСТВИЕМ УЛЬТРАФИОЛЕТОВОГО ОБЛУЧЕНИЯ Вместо термического разложения карбонилов металлов вполне возможно осуществлять их разложение воздействием высокоэнергетических световых лучей, в частности УФ облучения, с образованием ультрамикроскопическнх частиц металла, служащих дисперсной Фазой магнитных жидкостей. Сносов Хулл. По методике, разработанной Хуном н сотр. 116] в начале 1980-х годов, в кварцевой емкости к толуолу добавляют ПАВ (Мапохо!-ОТ), растворяют в этой среде М(СО), и подвергают полученный раствор УФ облучению. В результате М(СО)1а разлагается с выделением чистого г11 в виде частиц ультрамнкроскопического размера.

Последние пептизнруют в толуоле и получают магнитную жидкость с коллоидными частицами никеля. о.б. ВАКУУМНОЕ ИСПАРЕНИЕ В вакуумной камере нагревают металл до испарения, а затем быстро охлаждают. Этот способ известен издавна, и методика на его основе практикуется достаточно широко для получения ультра- микроскопических частиц металлов. Наиболее активные исследования в этой области осуществлялись Узда и др. 117). Диспергирование частиц с получением магнитной жидкости ведут традиционным способом.

Сносов Нлклтлни 118). Упрощенная схема установки для вакуумного испарения металлов по способу Накатани показана на рис. 6.5. Во вращающемся барабане в условиях вакуума осуществляется испарение металла с образованием частиц ультрамикроскопического размера и в конечном счете магнитной жидкости.

В нижней части барабана находится постоянно скапливающаяся там смесь основы и ПАВ. В процессе вращения барабана эта смесь образует на !37 Получение магнитных жнлкостея НаираВлелиа бра лсвния Рнс. 6.3. Установка лля вакуумного нспарення металлов. ! — пары металла; 3 — ультрамнкроскопнческне частицы металла; 3 — врагцаняцнвся барабан," 4 — смесь основы н ПАВ; 5 — магнитная жнякпстгя б — пленяа нэ ПАВ; 7 — нагревательныа элемент; 8— металл. его внутренней стенке пленку, которая поднимается вверх.

В верхней части барабана пленка захватывает частицы нспаренного металла и смачивает их. Эти частицы падают в жидкую основу и образуют с ней магнитную жидкость. 6.7. ГАЛЬВАНИЧЕСКИЙ СПОСОБ Методика приготовления магнитных жидкостей с ртутью в качестве основы путем электролнтнческого осаждения была разработана достаточно давно [19, 20!. На рис.

6.4 показана принципиальная схема гальванической установки для получения таких жидкостей. В ванну заливают водный раствор геЯО4, в который погружены электроды, в частности ртутный катод. Прн пропусканни тока начинается электролиз, в результате чего ионы Ге~+ осаждаются на этом катоде. Железо выделяется в виде частиц ультрамикроскопического размера; они диспергируются в ртути. Здесь возникает крайне нежелательное явление — коагуляцня этих частиц с'образованием крупных агрегатов, размеры которых постепенно увеличиваются. Во избежание слипания частиц в ртути растворяют олово; оно адсорбируется на поверхности частиц железа и действует как ПАВ, предотвращая их рост. Таким образом удается получить вполне стабильную магнитную жидкость на основе ртути. Глава б 1ЗН рею 1 На+За Рис.

6.4. Ванна для гальванического приготовления магнитных жалкостей. 1 — ргствор реБОе; 2 — электроаы. Глава 7 Магнитные свойства магнитных жидкостей 7.1. ОБРАЗОВАНИЕ МАГНИТНЫХ ДОМЕНОВ Обычно ферромагиетики состоят из множества доменов. При уменьшении их размеров может быть выделен одиночный домен. Деление на домены — основа при обсуясдении магнитных свойств магнитных лашкостей.

Причина образования доменов в массивном ферромагнетике — минимизация в этом процессе суммы магиитостатической энергии и энергии граничных слоев между доменами 1Ц'>. Рассмотрим два случая, когда сферическое магнитное тело радиусом Я является однодоменным и когда оно состоит нз двух доменов, и сравним значения свободной энергии для этих случаев (рис. 7.1). В случае одного долэена (рнс. 7.1, а) доменные границы отсутствуют и энергия граничного слоя.

равна нулю, однако существует магнитостатнческая энергия Е„н, обусловленная существованием вокруг сферы магнитного гюля: Е = 2лМэйэ/9ро (7.1) Здесь М, — намагниченность насыщения коллоидной частим . Для показанной на рис. 7.1, б доменной структуры, когда граница между верхним и нижним доменами, спонтанная намагниченность которых направлена навстречу друг другу, проходит по линии экватора, магнитостатическая энергия Е примерно в два раза меньше, чем в случае рис. 7.1, а. Энергия междоменной границы Е „, проходящей по линии экватора, равна (7.2) П В общем случае доменная структура возникает и результате минимизации суммы обменной энергии, энергии крнсталлограеическоа анизотролии, магннтостатическоя энергии и магнитострикционноа энергии. — Прим.

ред. Глава 1 140 яяияилглая синодал лилия лг/2 Рис. 7Л. Однодоменная н двуядоменная структуры. гл — магннтныа момент, которым обладает микроскопическая сфера. I — микроскопическая магнитная флера,".2 — гранила манну доменами. Здесь т — поверхностная плотность энергии на границе между доменами. Если ввести обозначение (7.3) то при 12к_#_0 сУмма Е, + Е для рис. 7.1, а становится меньше, чем для рнс. 7.1, б, а прн ст>ло имеет место обратное соотношение.

Слеловательно, в случае Я<Яр Устойчивым ЯвлаетсЯ состояние, приведенное на рис. 7.1, а, а в случае Е>Я вЂ” на рис. 7.1, б. В табл. 7.1 приведены значения Р для различных ферромагнетиков 121. Поскольку размеры коллоидных магнитных часпш в магнитной жидкости, как правило, меньше Ко, они имеют структуру одиночньгх доменов. уяблииа 7.ь прелелонып радиус Ре однодоменнон частипы 121 со млн! феррит г,о, борин 120 270 310 3000 2400 400 7.2. МАГНИТНЫЕ МОМЕНТЫ КОЛЛОИДНЫХ ЧАСТИЦ Поскольку спины электронов, движущихся в атомах, которые образуют однодоменную коллоидную частицу, взаимодействуют друг с другом и ориентируются параллельно или антипараллельно Магнитные свойства магнитных жидкостей гис.

7.2. Магнитные моменты атомов, образующих магнитную коллоидную частицу, хуиентированы в одном направлении. 1 — магнитные моменты атомов: 2 — суммаргый магнитный момент коллоидной частицы; 3 — магнитная коллондная частица. друг другу, магнитный момент частицы, обусловленный электронными спннамн, определяется как пронзведенне магнитного момента одного атома на число атомов в коллондной часпще (рнс. 7.2).

Налрнмер, магнитный момент коллондной частицы, содержашей 1000 атомов, каждый нз которых имеет магнитный момент 11гд (магнетон Бора рд = 1,1б5 10 ~ Т мз), равен 1000 угд, что на несколько порядков превышает магнитный момент обычной парамагнитной молекулы. Если коллондной частнце не свойственны магнитная аннзотропня н аннзотропня Формы, то в отсутствие внешнего магнитного поля ее магнитный лгемент совершает вращательное броуновское движение, характернзуюшееся средней энергией )гТ. Здесь |1 н Т— соответственно постоянная Больпмана н абсолютная температура. ил Рис.

7.3. Зависимость Е ог И. «» Глава 7 мг Однако, поскольку на практике существуют магнитная анизотропия и анизотропия формы частицы, тепловое движение вектора пэ ограничивается. Теперь предположим, что коллондная частица имеет одну ось легкого намагничивания (соответствующую миньмуму свободной энергии) и характеризуется константой К одноосной крнсталлографической анизотропии. На рис.

7.3 представлена зависимость между углом гд, который образует магнитный момент частицы относительно направления легкого намагничивания, и энергией магнитной анизотропии Е,„. Видно, что существует потещгнальный барьер, определяемый произведением объема коллоидной частицы У на константу анизотропии К. Если тепловая энергия А Тэ>, которая определяет интенсивность броуновского движения вектора т, в достаточной мере превосходит К У, магнитный момент легко преодолевает потенциальный барьер и может свободно вращаться в частице, однако в случае /гТ<К1г магнитный момент направлен вдоль оси легкого намагничивания. Неель 'олучнл выражение для частоты переходов магнитного момента в двух противоположных направлениях по оси легкого намагничивания (4]: .Т =,То ехр ( — К У//г Т).

(7.4) Здесь ~ составляет 1Оа с '. Неель показал также, что при У = 1 10 'а смэ выполняется равенство / = 10 ' с ', в то время как в случае У = 2 10 'а смэ частота / = 10 а с '. Другими словамн, возможность свободного вращения магнитного момента внутри коллоидной частицы или, наоборот, фиксация момента в частице сильно зависят от выполнения одного иэ двух условий К У//г Т> 1 илн К У//г Т<1. В табл.

7.2 принедены значения объема сферической частицы У при комнатной температуре (Т = 300 К) для ряда материалов. для кбторых К )г/К Т вЂ” — 1 (5). Поскольку эти значения попадают в диапазон распределения коллондных частиц магнитных жидкостей по размерам, среди них имеются частицы как со свободно вращающимся магнитным моментом, так и фиксированным относительно частицы. Если при комнатной температуре для частицы выполняется условие КУ/)г Т<1, то, понял(ая Т, можно добиться выполнения неравенства КУ/угТ) 1 н магнитный и В соответствии с законом равномерного распрелелеиия энергии по степеням свободы тсплоиаъ энергия, приходяпгаяся на одну степеиь свободы, равна я тп:, поскольку врагцедие сферы характеризуется двумя степенями свободы, ее тепловая энерра ят, Магнитные свояства магнитных жиикостея' 143 таблица Х2.

Характеристики сферических магнитных кистин Каистаита магият- К иок аиизстропии 1О 'э ем» с К Примеяаиия ГС 1О эре/ем' Материал К = Кз К = К~ К = К„ К= — К К = — К~ 23 55 13 42 50 293 К 296" К 300 К 300 К 293 К 0„47 0,06 4,53 0.14 0,03 ре ка Со рея Оо Мпо, и хполэ г о 0,8 6,9 0,091 3,0 5,2 момент будет фиксирован относительно частицы. Температура, при которой выполняется равенство К)г//сТ = 1, называется бло- кирующей. 7.3. СУПЕРПАРАМАГНЕТИЗМ т(Н) = М, 171.(М,)гНIКТ).

Характеристики

Тип файла
DJVU-файл
Размер
4,4 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6455
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее