Главная » Просмотр файлов » Лекции 12-23. Математическая логика (после колка)

Лекции 12-23. Математическая логика (после колка) (1161871), страница 6

Файл №1161871 Лекции 12-23. Математическая логика (после колка) (Лекции 2014) 6 страницаЛекции 12-23. Математическая логика (после колка) (1161871) страница 62019-09-19СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

. , Ci , . . . , Cj , . . . , Cm кхорновской логической программе P имеет вычислениеG0 :?C1 , . . . , Ci , . . . , Cj , . . . , CmD1θ1 ∈ НОУ(Ci , D1+ )9?G10 :?(C1 , . . . , D1− , . . . , Cj , . . . , Cm )θ1D2 θ2 ∈ НОУ(Cj θ1 , D2+ )9?G20 :?(C1 θ1 , . . . , D1− θ1 , . . . , D2− , . .

. , Cm θ1 )θ2ПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙПереключательная лемма.Тогда запрос G0 к программе P также имеет вычислениеG0 :?C1 , . . . , Ci , . . . , Cj , . . . , CmD2η1 ∈ НОУ(Cj , D2+ )9?G100 :?(C1 , . . . , Ci , . . . , D2− , . . . , Cm )η1D1 η2 ∈ НОУ(Ci η1 , D1+ )9?G200 :?(C1 η1 , . . . , D1− , . . . , D2− η1 . . . , Cm η1 )η2и при этом запросы G20 и G200 являются вариантами друг друга,т. е. θ1 θ2 ρ0 = η1 η2 и η1 η2 ρ00 = θ1 θ2 для некоторых ρ0 , ρ00 ∈ Subst.ПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙПереключательная лемма говорит о том, что при изменениипорядка выбора подцелей результат вычисления сохраняется (сточностью до переименования переменных).ПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙДоказательство (переключательной леммы).Рассмотрим первое вычислениеG0 :?C1 , .

. . , Ci , . . . , Cj , . . . , CmD1 θ ∈ НОУ(C , D + )19?i1G10 :?(C1 , . . . , D1− , . . . , Cj , . . . , Cm )θ1D2 θ ∈ НОУ(C θ9?2+j 1 , D2 )G20 :?(C1 θ1 , . . . , D1− θ1 , . . . , D2− , . . . , Cm θ1 )θ2ПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙДоказательство (переключательной леммы).Рассмотрим первое вычислениеG0 :?C1 , . . . , Ci , . . . , Cj , . .

. , CmD1 θ ∈ НОУ(C , D + )19?iСогласно определениюSLD-резолютивного вычисленияDomθ1 ∩ VarD2 = ∅.1G10 :?(C1 , . . . , D1− , . . . , Cj , . . . , Cm )θ1D2 θ ∈ НОУ(C θ9?2+j 1 , D2 )G20 :?(C1 θ1 , . . . , D1− θ1 , . . . , D2− , . . . , Cm θ1 )θ2ПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙДоказательство (переключательной леммы).Рассмотрим первое вычислениеG0 :?C1 , . . .

, Ci , . . . , Cj , . . . , CmD1 θ ∈ НОУ(C , D + )19?i1Согласно определениюSLD-резолютивного вычисленияDomθ1 ∩ VarD2 = ∅.Поэтому D2+ θ2 = D2+ θ1 θ2 .G10 :?(C1 , . . . , D1− , . . . , Cj , . . . , Cm )θ1D2 θ ∈ НОУ(C θ9?2+j 1 , D2 )G20 :?(C1 θ1 , . . . , D1− θ1 , . . . , D2− , . . . , Cm θ1 )θ2ПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙДоказательство (переключательной леммы).Рассмотрим первое вычислениеG0 :?C1 , .

. . , Ci , . . . , Cj , . . . , CmD1 θ ∈ НОУ(C , D + )9?1i1Согласно определениюSLD-резолютивного вычисленияDomθ1 ∩ VarD2 = ∅.Поэтому D2+ θ2 = D2+ θ1 θ2 .G10 :?(C1 , . . . , D1− , . . . , Cj , . . . , Cm )θ1D29?θ ∈ НОУ(C θ2+j 1 , D2 )Следовательно,Cj θ1 θ2 = D2+ θ2 = D2+ θ1 θ2 ,т. е.

Cj и D2+ унифицируемы.G20 :?(C1 θ1 , . . . , D1− θ1 , . . . , D2− , . . . , Cm θ1 )θ2ПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙДоказательство (переключательной леммы).Рассмотрим первое вычислениеG0 :?C1 , . . . , Ci , . . . , Cj , . . . , CmD1 θ ∈ НОУ(C , D + )19?iА раз Cj и D2+ унифицируемы,существует η1 ∈ НОУ(Cj , D2+ ),и при этом θ1 θ2 = η1 λ.1G10 :?(C1 , . . . , D1− , . . . , Cj , . . . , Cm )θ1D2 θ ∈ НОУ(C θ9?2+j 1 , D2 )G20 :?(C1 θ1 , . . .

, D1− θ1 , . . . , D2− , . . . , Cm θ1 )θ2ПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙДоказательство (переключательной леммы).Рассмотрим первое вычислениеG0 :?C1 , . . . , Ci , . . . , Cj , . . . , CmD1 θ ∈ НОУ(C , D + )19?iДалее, заметим,что Ci θ1 θ2 = D1+ θ1 θ2 ,и поэтому Ci η1 λ = D1+ η1 λ.1G10 :?(C1 , . . . , D1− , . . . , Cj , . . . , Cm )θ1D2 θ ∈ НОУ(C θ9?2+j 1 , D2 )G20 :?(C1 θ1 , . . . , D1− θ1 , .

. . , D2− , . . . , Cm θ1 )θ2ПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙДоказательство (переключательной леммы).Рассмотрим первое вычислениеG0 :?C1 , . . . , Ci , . . . , Cj , . . . , CmD1 θ ∈ НОУ(C , D + )Далее, заметим,что Ci θ1 θ2 = D1+ θ1 θ2 ,и поэтому Ci η1 λ = D1+ η1 λ.Т. к. Domη1 ∩ VarD1 = ∅,верноD1+ η1 = D1+ .G10 :?(C1 , . .

. , D1− , . . . , Cj , . . . , Cm )θ119?i1D2 θ ∈ НОУ(C θ9?2+j 1 , D2 )G20 :?(C1 θ1 , . . . , D1− θ1 , . . . , D2− , . . . , Cm θ1 )θ2ПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙДоказательство (переключательной леммы).Рассмотрим первое вычислениеG0 :?C1 , . . . , Ci , . . . , Cj , . . . , CmD1 θ ∈ НОУ(C , D + )Далее, заметим,что Ci θ1 θ2 = D1+ θ1 θ2 ,и поэтому Ci η1 λ = D1+ η1 λ.Т. к. Domη1 ∩ VarD1 = ∅,верноD1+ η1 = D1+ .G10 :?(C1 , . . . , D1− , . . .

, Cj , . . . , Cm )θ1Значит, Ci η1 λ = D1+ λ,D2т. е. Ci η1 и D1+ унифицируемы.9?9?1θ2i1∈ НОУ(Cj θ1 , D2+ )G20 :?(C1 θ1 , . . . , D1− θ1 , . . . , D2− , . . . , Cm θ1 )θ2ПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙДоказательство (переключательной леммы).Рассмотрим первое вычислениеG0 :?C1 , . . . , Ci , . . . , Cj , .

. . , CmD1 θ ∈ НОУ(C , D + )19?iА раз Ci η1 и D1+ унифицируемы,существует η2 ∈ НОУ(Ci η1 , D1+ ),и при этом λ = η2 ρ0 .1G10 :?(C1 , . . . , D1− , . . . , Cj , . . . , Cm )θ1D2 θ ∈ НОУ(C θ9?2+j 1 , D2 )G20 :?(C1 θ1 , . . . , D1− θ1 , . . . , D2− , . . . , Cm θ1 )θ2ПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙДоказательство (переключательной леммы).Рассмотрим первое вычислениеG0 :?C1 , . . . , Ci , . . . , Cj , . . . , CmD1 θ ∈ НОУ(C , D + )19?i1Итак, получаемη1 ∈ НОУ(Cj , D2+ ),η2 ∈ НОУ(Ci η1 , D1+ ),θ1 θ2 = η1 λ = η1 η2 ρ0 .G10 :?(C1 , .

. . , D1− , . . . , Cj , . . . , Cm )θ1D2 θ ∈ НОУ(C θ9?2+j 1 , D2 )G20 :?(C1 θ1 , . . . , D1− θ1 , . . . , D2− , . . . , Cm θ1 )θ2ПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙДоказательство (переключательной леммы).Получаем другое вычислениеG0 :?C1 , . . . , Ci , . . . , Cj , . . . , CmD2 η ∈ НОУ(C , D + )9?1j2Итак, получаемη1 ∈ НОУ(Cj , D2+ ),η2 ∈ НОУ(Ci η1 , D1+ ),θ1 θ2 = η1 λ = η1 η2 ρ0 .G100 :?(C1 , .

. . , Ci , . . . , D2− , . . . , Cm )η1D19?η ∈ НОУ(C η2Значит, запрос G0 имеети другое вычисление.+i 1 , D1 )G200 :?(C1 η1 , . . . , D1− , . . . , D2− η1 . . . , Cm η1 )η2ПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙДоказательство (переключательной леммы).G0 :?C1 , . . . , Ci , . . . , Cj , . . . , CmD2η1 ∈ НОУ(Cj , D2+ )9?Применяя те же рассужденияк построенному вычислениюполучим η1 η2 = θ1 θ2 ρ00 .G100 :?(C1 , . . . , Ci , . . . , D2− , . . . , Cm )η1D1 η2 ∈ НОУ(Ci η1 , D1+ )9?G200 :?(C1 η1 , . .

. , D1− , . . . , D2− η1 . . . , Cm η1 )η2ПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙДоказательство (переключательной леммы).G0 :?C1 , . . . , Ci , . . . , Cj , . . . , CmD2η ∈ НОУ(C , D + )9?1jПрименяя те же рассужденияк построенному вычислениюполучим η1 η2 = θ1 θ2 ρ00 .2G100 :?(C1 , . . . , Ci , . . . , D2− , . .

. , Cm )η1D1η2 ∈ НОУ(Ci η1 , D1+ )9?G200 :?(C1 η1 , . . . , D1− , . . . , D2− η1 . . . , Cm η1 )η2Равенства θ1 θ2 = η1 η2 ρ0 , η1 η2 = θ1 θ2 ρ00 означают, чтоподстановки η1 η2 и θ1 θ2 , а также запросы G20 и G200 являютсявариантами друг друга.ПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙТеорема сильной полнотыКаково бы ни было правило выбора подцелей R, если θ —правильный ответ на запрос G0 к хорновской логическойпрограмме P, то существует такой R-вычисленный ответ η,что равенствоθ = ηρвыполняется для некоторой подстановки ρ.ДоказательствоПо теореме полноты существут такой вычисленный ответ η 0 ,что θ = η 0 ρ0 .

Рассмотрим соответствующее этому ответууспешное вычисление запроса G0comp 0 = (D1 , η10 , G1 ), . . . , (DN , ηN, ),0 .в котором η 0 = η10 . . . ηNПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙДоказательствоПредположим, что R(G0 ) = Ci . Поскольку comp 0 — этоуспешное вычисление, существует ki , что подцель Ci впервыевыбирается на ki -ом шаге вычисления comp 0 .

Применяяпоследовательно ki раз переключательную лемму, можнополучить успешное вычисление00comp 00 = (Dik , η100 , G100 ), (D1 , η200 , G100 ), . . . , (DN , ηN, ),в котором на первом шаге выбирается подцель Ci = R(G0 ), но00 — это вариантпри этом вычисленный результат η 00 = η100 . .

. ηN000вычисленного ответа η = η1 . . . ηN , и значит θ = η 00 ρ00 .Повторяя этот трюк N раз, получим требуемое успешноеR-вычисление.Полное и строгое доказательство требует примененияматематической индукции. Провести самостоятельно.ПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙТеорема сильной полноты говорит о том.

что правило выбораподцелей не играет существенной роли при вычислении ответа:любое правило выбора подцелей позволяет получить всевычисленные ответы.Поэтому для единообразной организации вычисленийлогических программ всегда используется стандартноеправило выбора : в каждом запросе всегда выбирается самаяпервая (левая) подцель.Теперь займемся вопросом о том, какую роль играет выборподходящих программных утверждений.ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММОбратимся снова к запросу ?P(U, V ), R(U) к логическойпрограммеP : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;Q(c) ←;(1)(2)(3)(4)и будем применять стандартное правило выбора подцелей.ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММТогда возможны следующие два вычисления запроса?P(U, V ), R(U)?P(U, V ), R(U)?P(U, V ), R(U)P(X1 , Y1 ) ← R(X1 ), Q(Y1 )θ1 = {U/X1 , V /Y1 }??R(X1 ), Q(Y1 ), R(X1 )R(b) ←P(X1 , X1 ) ← Q(X1 );η1 = {U/X1 , V /X1 }??Q(X1 ), R(X1 )Q(c) ←η2 = {X1 /c}θ2 = {X1 /b}??Q(Y1 ), R(b)Q(c) ←θ = {Y1 /c}3??R(b)R(b) ←θ4 = ε????R(c)failureтупиковое вычислениеДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММКак видно из этого примера, выбор программных утвержденийиграет значительную роль.Программное утверждение — это способ (рецепт) решениязадачи (подцели).

Характеристики

Тип файла
PDF-файл
Размер
5,97 Mb
Материал
Тип материала
Высшее учебное заведение

Список файлов лекций

Лекции 2014
Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6374
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее