Лекции 12-23. Математическая логика (после колка) (1161871), страница 7
Текст из файла (страница 7)
Ясно, что некоторые способы решения могутбыть «хорошими», а некоторые — «плохими».Таким образом, чтобы вычислить все ответы на запрос (или,что то же само, гарантировать вычисление хотя бы одногоответа), нужно уметь просматривать все варианты выборапрограммных утверждений. И нужно правильно организоватьэтот перебор.ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММОпределениеДеревом SLD-резолютивных вычислений запроса G0 клогической программе P называется помеченное корневоедерево TG0 ,P , удовлетворяющее следующим требованиям:1. Корнем дерева является исходный запрос G0 ;2. Потомками каждой вершины G являются всевозможныеSLD-резольвенты запроса G (при фиксированномстандартном правиле выбора подцелей);3.
Листовыми вершинами являются пустые запросы(завершающие успешные вычисления) и запросы, неимеющие SLD-резольвент (завершающие тупиковыевычисления).ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММИллюстрация?Gt 0P)@PPqR@?'TG0 ,P?GitPq t ?Gi0vt) @PPqqq@R t 000@?G 00 t?G?Gi0ii$?Gt j?t?&%ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример 1.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?P(U,V ), R(U)t@ (2), {U/X1 , V /X1 }@R t?Q(X1 ), R(X1 )@(2), {X1 /c}?Q(Y1 ), R(b) t??t?R(c)failure(4), {Y1 /c}?R(b) ?t(3), ε?t?ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММ.Пример 2.t?P(X Y ).P : P(X L) ← P(L), R(X );(1), {X1 /X , L1 /Y }P(nil) ←;?t?P(Y ), R(X )R(a) ←;@ (2), {Y /nil}(1), {Y /X2 L2 }@R(c) ←;R t?R(X )@?P(L2 ), R(X2 ), R(X )t.(1), {L2 /X3.L3 }(3), {X /a} @ (4), {X /c}@(2), {L2 /nil}?P(L3 ), R(X3 ),?) ?R(X2 ), R(X ) ttR(X2 ), R(X )@?@(3), {X1 /a}??Rt?R(X )@tt?R(X )@@ (4), {X /c}(4),{X/c}?R(X3 ), R(X2 ), R(X )(3), {X /a} @ (3), {X /a} @?Rt?Rtt @t @)∞?Rtt @(2), {L3 /nil}(3), {X1 /a}????ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММИтак, деревья вычислений логических программ бываютразные — конечные и бесконечные, с конечным илибесконечным множеством ветвей, и т.
п.Каждая ветвь дерева TG0 ,P соответствует одному извозможных вычислений запроса G0 к логической программе P.Некоторые из ветвей образуют успешное вычисление и даютответ на запрос.Возникает вопрос:Как нам обнаружить ветви успешных вычислений в деревеSLD-резолютивных вычислений программы?СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММОпределениеСтратегией вычисления запросов к логическим программамназывается алгоритм построения (обхода) дереваSLD-резолютивных вычислений TG0 ,P всякого запроса G0 кпроизвольной логической программе PСтратегия вычислений называется вычислительно полной ,если для любого запроса G0 и любой логической программы Pэта стратегия строит (обнаруживает) все успешныевычисления запроса G0 к программы PСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММФактически, стратегия вычисления — это одна стратегийобхода корневого дерева. Как известно, таких стратегийсуществует много, но среди них выделяются две наиболеехарактерные:Iстратегия обхода в ширину , при которой деревостроится (обходится) поярусно — вершина i-го нестроится, до тех пор пока не будут построены все вершины(i − 1)-го яруса;Iстратегия обхода в глубину с возвратом , при которойветви дерева обходятся поочередно — очередная ветвьдерева не обохдится, до тех пор пока не будут пройденывсе вершины текущей ветви.СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в ширину.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;Q(c) ←;СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в ширину.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;Q(c) ←;?P(U,V ), R(U)tСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в ширину.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t?P(U,V ), R(U)tСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в ширину.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t?P(U,V ), R(U)t@ (2), {U/X1 , V /X1 }@R t?Q(X1 ), R(X1 )@СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в ширину.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?Q(Y1 ), R(b) ?t?P(U,V ), R(U)t@ (2), {U/X1 , V /X1 }@R t?Q(X1 ), R(X1 )@СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в ширину.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?Q(Y1 ), R(b) ?t?P(U,V ), R(U)t@ (2), {U/X1 , V /X1 }@R t?Q(X1 ), R(X1 )@(2), {X1 /c}?t?R(c)СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в ширину.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?Q(Y1 ), R(b) ?t(4), {Y1 /c}?R(b) ?t?P(U,V ), R(U)t@ (2), {U/X1 , V /X1 }@R t?Q(X1 ), R(X1 )@(2), {X1 /c}?t?R(c)СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в ширину.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?Q(Y1 ), R(b) ?t(4), {Y1 /c}?R(b) ?t?P(U,V ), R(U)t@ (2), {U/X1 , V /X1 }@R t?Q(X1 ), R(X1 )@(2), {X1 /c}?t?R(c)failureСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в ширину.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?P(U,V ), R(U)t@ (2), {U/X1 , V /X1 }@R t?Q(X1 ), R(X1 )@(2), {X1 /c}?Q(Y1 ), R(b) ?t?t?R(c)failure(4), {Y1 /c}?R(b) ?t(3), ε?t?СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММСтратегия обхода в ширину является вычислительно полной,посколькуI каждый запрос имеет конечное число SLD-резольвент, ипоэтому в каждом ярусе дерева SLD-резолютивныхвычислений имеется конечное число вершин;I каждое успешное вычисление завершается на некоторомярусе;I и поэтому каждое успешное вычисление будет рано илипоздно полностью построено.Но строить интерпретатор логических программ на основестратегии обхода в ширину нецелесообразно.
При обходедерева в ширину нужно обязательно хранить в памяти всевершины очередного яруса. Это требует большого расходапамяти. Например, в 100-м ярусе двоичного дерева содержится299 вершин. Вычислительных ресурсов всего земного шара нехватит, чтобы хранить информацию обо всех этих вершинах.СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММСтратегия обхода в глубину с возвратом основана наследующих принципах:1.
все программные утверждения упорядочиваются;2. на каждом шаге обхода из текущей вершины Gосуществляется переходIIлибо в новую вершину-потомок G 0 , которая являетсяSLD-резольвентой запроса G и первого по порядкупрограммного утверждения D, ранее не использованногодля этой цели;либо в ранее построенную родительскую вершину G 00(откат), если все программные утверждения уже былиопробованы для построения SLD-резольвент запроса G .СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;Q(c) ←;СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;Q(c) ←;?P(U,V ), R(U)tСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t?P(U,V ), R(U)tСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?Q(Y1 ), R(b) ?t?P(U,V ), R(U)tСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?Q(Y1 ), R(b) ?t(4), {Y1 /c}?R(b) ?t?P(U,V ), R(U)tСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?Q(Y1 ), R(b) ?t(4), {Y1 /c}?R(b) ?t(3), ε?t??P(U,V ), R(U)tСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?Q(Y1 ), R(b) ?t(4), {Y1 /c}?R(b) ?t6(3), ε?t??P(U,V ), R(U)tСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?Q(Y1 ), R(b) ?t(4), {Y1 /c}6?R(b) ?t6(3), ε?t??P(U,V ), R(U)tСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?P(U,V ), R(U)t6?Q(Y1 ), R(b) ?t(4), {Y1 /c}6?R(b) ?t6(3), ε?t?СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?P(U,V ), R(U)t6?Q(Y1 ), R(b) ?t(4), {Y1 /c}6?R(b) ?t6(3), ε?t?СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}6?Q(Y1 ), R(b) ?t(4), {Y1 /c}6?R(b) ?t(3), ε6?t??P(U,V ), R(U)t@ (2), {U/X1 , V /X1 } @R t?Q(X1 ), R(X1 )@СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );?P(U,V ), R(U)tR(b) ←;@(1), {U/X1 , V /Y1 } @(2), {U/X1 , V /X1 }Q(c) ←;@ t?Q(X1 ), R(X1 )R?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}6?Q(Y1 ), R(b) ?t(4), {Y1 /c}6?R(b) ?t(3), ε6?t?(2), {X1 /c}?t?R(c)СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );?P(U,V ), R(U)tR(b) ←;@(1), {U/X1 , V /Y1 } @(2), {U/X1 , V /X1 }Q(c) ←;@ t?Q(X1 ), R(X1 )R?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}6?Q(Y1 ), R(b) ?t(4), {Y1 /c}6?R(b) ?t6(3), ε?t?6(2), {X1 /c}?t?R(c)failureСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );?P(U,V ), R(U)tR(b) ←;@(1), {U/X1 , V /Y1 }(2), {U/X1 , V /X1 }@I@@Q(c) ←;R t?Q(X1 ), R(X1 )?R(X1 ), Q(Y1 ), R(X1 ) t@@(3), {X1 /b}6?Q(Y1 ), R(b) ?t(4), {Y1 /c}6?R(b) ?t6(3), ε?t?6(2), {X1 /c}?t?R(c)failureСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММСтратегия обхода в глубину с возвратомIимеет эффективную реализацию: в памяти нужно хранитьлишь запросы той ветви, по которой идет обход, и каждыйзапрос должен вести учет использованных программныхутверждений;Iявляется, к сожалению, вычислительно неполной.ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММ.Обратимся к примеру 2.t?P(X Y ).P : P(X L) ← P(L), R(X );P(nil) ←;R(a) ←;R(c) ←;(1), {X1 /X , L1 /Y }(1), {Y /X2(1), {L2 /X3(1), {L3 /X4(1), {L4 /X5....?t?P(Y ), R(X )L2 }t?P(L2 ), R(X2 ), R(X )L3 }t?P(L3 ), R(X3 ), R(X2 ), R(X )L4 }t?P(L4 ), R(X4 ), R(X3 ), R(X2 ), R(X )L5 }∞ Обход дерева TG ,P уходит в глубинупо бесконечной ветви и не может возвратиться,чтобы обнаружить успешное вычисление.СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММСтратегия обхода в глубину с возвратом чувствительна кпорядку расположения программных утверждений в логическихпрограммах.