14. Правила выбора подцелей. Деревья вычислений логических программ. Стратегии вычисления логических программ (1158027), страница 2
Текст из файла (страница 2)
. , D2− , . . . , Cm )η1D1 η2 ∈ НОУ(Ci η1 , D1+ )9?G200 :?(C1 η1 , . . . , D1− , . . . , D2− η1 . . . , Cm η1 )η2ПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙДоказательство (переключательной леммы).G0 :?C1 , . . . , Ci , . . . , Cj , . . . , CmD2η ∈ НОУ(C , D + )9?1jПрименяя те же рассужденияк построенному вычислениюполучим η1 η2 = θ1 θ2 ρ00 .2G100 :?(C1 , . . . , Ci , . . .
, D2− , . . . , Cm )η1D1η2 ∈ НОУ(Ci η1 , D1+ )9?G200 :?(C1 η1 , . . . , D1− , . . . , D2− η1 . . . , Cm η1 )η2Равенства θ1 θ2 = η1 η2 ρ0 , η1 η2 = θ1 θ2 ρ00 означают, чтоподстановки η1 η2 и θ1 θ2 , а также запросы G20 и G200 являютсявариантами друг друга.ПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙТеорема сильной полнотыКаково бы ни было правило выбора подцелей R, если θ —правильный ответ на запрос G0 к хорновской логическойпрограмме P, то существует такой R-вычисленный ответ η,что равенствоθ = ηρвыполняется для некоторой подстановки ρ.ДоказательствоПо теореме полноты существут такой вычисленный ответ η 0 ,что θ = η 0 ρ0 . Рассмотрим соответствующее этому ответууспешное вычисление запроса G0comp 0 = (D1 , η10 , G1 ), .
. . , (DN , ηN, ),0 .в котором η 0 = η10 . . . ηNПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙДоказательствоПредположим, что R(G0 ) = Ci . Поскольку comp 0 — этоуспешное вычисление, существует ki , что подцель Ci впервыевыбирается на ki -ом шаге вычисления comp 0 . Применяяпоследовательно ki раз переключательную лемму, можнополучить успешное вычисление00comp 00 = (Dik , η100 , G100 ), (D1 , η200 , G100 ), . . . , (DN , ηN, ),в котором на первом шаге выбирается подцель Ci = R(G0 ), но00 — это вариантпри этом вычисленный результат η 00 = η100 .
. . ηN000вычисленного ответа η = η1 . . . ηN , и значит θ = η 00 ρ00 .Повторяя этот трюк N раз, получим требуемое успешноеR-вычисление.Полное и строгое доказательство требует примененияматематической индукции. Провести самостоятельно.ПРАВИЛА ВЫБОРА ПОДЦЕЛЕЙТеорема сильной полноты говорит о том. что правило выбораподцелей не играет существенной роли при вычислении ответа:любое правило выбора подцелей позволяет получить всевычисленные ответы.Поэтому для единообразной организации вычисленийлогических программ всегда используется стандартноеправило выбора : в каждом запросе всегда выбирается самаяпервая (левая) подцель.Теперь займемся вопросом о том, какую роль играет выборподходящих программных утверждений.ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММОбратимся снова к запросу ?P(U, V ), R(U) к логическойпрограммеP : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;Q(c) ←;(1)(2)(3)(4)и будем применять стандартное правило выбора подцелей.ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММТогда возможны следующие два вычисления запроса?P(U, V ), R(U)?P(U, V ), R(U)?P(U, V ), R(U)P(X1 , Y1 ) ← R(X1 ), Q(Y1 )θ1 = {U/X1 , V /Y1 }??R(X1 ), Q(Y1 ), R(X1 )R(b) ←P(X1 , X1 ) ← Q(X1 );η1 = {U/X1 , V /X1 }??Q(X1 ), R(X1 )Q(c) ←η2 = {X1 /c}θ2 = {X1 /b}??Q(Y1 ), R(b)Q(c) ←θ = {Y1 /c}3??R(b)R(b) ←θ4 = ε????R(c)failureтупиковое вычислениеДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММКак видно из этого примера, выбор программных утвержденийиграет значительную роль.Программное утверждение — это способ (рецепт) решениязадачи (подцели).
Ясно, что некоторые способы решения могутбыть «хорошими», а некоторые — «плохими».Таким образом, чтобы вычислить все ответы на запрос (или,что то же само, гарантировать вычисление хотя бы одногоответа), нужно уметь просматривать все варианты выборапрограммных утверждений. И нужно правильно организоватьэтот перебор.ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММОпределениеДеревом SLD-резолютивных вычислений запроса G0 клогической программе P называется помеченное корневоедерево TG0 ,P , удовлетворяющее следующим требованиям:1.
Корнем дерева является исходный запрос G0 ;2. Потомками каждой вершины G являются всевозможныеSLD-резольвенты запроса G (при фиксированномстандартном правиле выбора подцелей);3. Листовыми вершинами являются пустые запросы(завершающие успешные вычисления) и запросы, неимеющие SLD-резольвент (завершающие тупиковыевычисления).ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММИллюстрация?Gt 0P)@PPqR@?'TG0 ,P?GitPq t ?Gi0vt) @PPqqq@R t 000@?G 00 t?G?Gi0ii$?Gt j?t?&%ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример 1.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?P(U,V ), R(U)t@ (2), {U/X1 , V /X1 }@R t?Q(X1 ), R(X1 )@(2), {X1 /c}?Q(Y1 ), R(b) t??t?R(c)failure(4), {Y1 /c}?R(b) ?t(3), ε?t?ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММ.Пример 2.t?P(X Y ).P : P(X L) ← P(L), R(X );(1), {X1 /X , L1 /Y }P(nil) ←;?t?P(Y ), R(X )R(a) ←;@ (2), {Y /nil}(1), {Y /X2 L2 }@R(c) ←;R t?R(X )@?P(L2 ), R(X2 ), R(X )t.(1), {L2 /X3.L3 }(3), {X /a} @ (4), {X /c}@(2), {L2 /nil}?P(L3 ), R(X3 ),?) ?R(X2 ), R(X ) ttR(X2 ), R(X )@?@(3), {X1 /a}??Rt?R(X )@tt?R(X )@@ (4), {X /c}(4),{X/c}?R(X3 ), R(X2 ), R(X )(3), {X /a} @ (3), {X /a} @?Rt?Rtt @t @)∞?Rtt @(2), {L3 /nil}(3), {X1 /a}????ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММИтак, деревья вычислений логических программ бываютразные — конечные и бесконечные, с конечным илибесконечным множеством ветвей, и т.
п.Каждая ветвь дерева TG0 ,P соответствует одному извозможных вычислений запроса G0 к логической программе P.Некоторые из ветвей образуют успешное вычисление и даютответ на запрос.Возникает вопрос:Как нам обнаружить ветви успешных вычислений в деревеSLD-резолютивных вычислений программы?СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММОпределениеСтратегией вычисления запросов к логическим программамназывается алгоритм построения (обхода) дереваSLD-резолютивных вычислений TG0 ,P всякого запроса G0 кпроизвольной логической программе PСтратегия вычислений называется вычислительно полной ,если для любого запроса G0 и любой логической программы Pэта стратегия строит (обнаруживает) все успешныевычисления запроса G0 к программы PСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММФактически, стратегия вычисления — это одна стратегийобхода корневого дерева.
Как известно, таких стратегийсуществует много, но среди них выделяются две наиболеехарактерные:Iстратегия обхода в ширину , при которой деревостроится (обходится) поярусно — вершина i-го нестроится, до тех пор пока не будут построены все вершины(i − 1)-го яруса;Iстратегия обхода в глубину с возвратом , при которойветви дерева обходятся поочередно — очередная ветвьдерева не обохдится, до тех пор пока не будут пройденывсе вершины текущей ветви.СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в ширину.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;Q(c) ←;СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в ширину.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;Q(c) ←;?P(U,V ), R(U)tСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в ширину.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t?P(U,V ), R(U)tСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в ширину.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t?P(U,V ), R(U)t@ (2), {U/X1 , V /X1 }@R t?Q(X1 ), R(X1 )@СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в ширину.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?Q(Y1 ), R(b) ?t?P(U,V ), R(U)t@ (2), {U/X1 , V /X1 }@R t?Q(X1 ), R(X1 )@СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в ширину.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?Q(Y1 ), R(b) ?t?P(U,V ), R(U)t@ (2), {U/X1 , V /X1 }@R t?Q(X1 ), R(X1 )@(2), {X1 /c}?t?R(c)СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в ширину.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?Q(Y1 ), R(b) ?t(4), {Y1 /c}?R(b) ?t?P(U,V ), R(U)t@ (2), {U/X1 , V /X1 }@R t?Q(X1 ), R(X1 )@(2), {X1 /c}?t?R(c)СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в ширину.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?Q(Y1 ), R(b) ?t(4), {Y1 /c}?R(b) ?t?P(U,V ), R(U)t@ (2), {U/X1 , V /X1 }@R t?Q(X1 ), R(X1 )@(2), {X1 /c}?t?R(c)failureСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в ширину.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?P(U,V ), R(U)t@ (2), {U/X1 , V /X1 }@R t?Q(X1 ), R(X1 )@(2), {X1 /c}?Q(Y1 ), R(b) ?t?t?R(c)failure(4), {Y1 /c}?R(b) ?t(3), ε?t?СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММСтратегия обхода в ширину является вычислительно полной,посколькуI каждый запрос имеет конечное число SLD-резольвент, ипоэтому в каждом ярусе дерева SLD-резолютивныхвычислений имеется конечное число вершин;I каждое успешное вычисление завершается на некоторомярусе;I и поэтому каждое успешное вычисление будет рано илипоздно полностью построено.Но строить интерпретатор логических программ на основестратегии обхода в ширину нецелесообразно.
При обходедерева в ширину нужно обязательно хранить в памяти всевершины очередного яруса. Это требует большого расходапамяти. Например, в 100-м ярусе двоичного дерева содержится299 вершин. Вычислительных ресурсов всего земного шара нехватит, чтобы хранить информацию обо всех этих вершинах.СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММСтратегия обхода в глубину с возвратом основана наследующих принципах:1. все программные утверждения упорядочиваются;2.