Главная » Просмотр файлов » 14. Правила выбора подцелей. Деревья вычислений логических программ. Стратегии вычисления логических программ

14. Правила выбора подцелей. Деревья вычислений логических программ. Стратегии вычисления логических программ (1158027), страница 3

Файл №1158027 14. Правила выбора подцелей. Деревья вычислений логических программ. Стратегии вычисления логических программ (В.А. Захаров - Лекции) 3 страница14. Правила выбора подцелей. Деревья вычислений логических программ. Стратегии вычисления логических программ (1158027) страница 32019-09-18СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

на каждом шаге обхода из текущей вершины Gосуществляется переходIIлибо в новую вершину-потомок G 0 , которая являетсяSLD-резольвентой запроса G и первого по порядкупрограммного утверждения D, ранее не использованногодля этой цели;либо в ранее построенную родительскую вершину G 00(откат), если все программные утверждения уже былиопробованы для построения SLD-резольвент запроса G .СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;Q(c) ←;СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;Q(c) ←;?P(U,V ), R(U)tСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t?P(U,V ), R(U)tСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?Q(Y1 ), R(b) ?t?P(U,V ), R(U)tСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?Q(Y1 ), R(b) ?t(4), {Y1 /c}?R(b) ?t?P(U,V ), R(U)tСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?Q(Y1 ), R(b) ?t(4), {Y1 /c}?R(b) ?t(3), ε?t??P(U,V ), R(U)tСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?Q(Y1 ), R(b) ?t(4), {Y1 /c}?R(b) ?t6(3), ε?t??P(U,V ), R(U)tСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?Q(Y1 ), R(b) ?t(4), {Y1 /c}6?R(b) ?t6(3), ε?t??P(U,V ), R(U)tСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?P(U,V ), R(U)t6?Q(Y1 ), R(b) ?t(4), {Y1 /c}6?R(b) ?t6(3), ε?t?СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}?P(U,V ), R(U)t6?Q(Y1 ), R(b) ?t(4), {Y1 /c}6?R(b) ?t6(3), ε?t?СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );R(b) ←;(1), {U/X1 , V /Y1 }Q(c) ←;?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}6?Q(Y1 ), R(b) ?t(4), {Y1 /c}6?R(b) ?t(3), ε6?t??P(U,V ), R(U)t@ (2), {U/X1 , V /X1 } @R t?Q(X1 ), R(X1 )@СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );?P(U,V ), R(U)tR(b) ←;@(1), {U/X1 , V /Y1 } @(2), {U/X1 , V /X1 }Q(c) ←;@ t?Q(X1 ), R(X1 )R?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}6?Q(Y1 ), R(b) ?t(4), {Y1 /c}6?R(b) ?t(3), ε6?t?(2), {X1 /c}?t?R(c)СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );?P(U,V ), R(U)tR(b) ←;@(1), {U/X1 , V /Y1 } @(2), {U/X1 , V /X1 }Q(c) ←;@ t?Q(X1 ), R(X1 )R?R(X1 ), Q(Y1 ), R(X1 ) t(3), {X1 /b}6?Q(Y1 ), R(b) ?t(4), {Y1 /c}6?R(b) ?t6(3), ε?t?6(2), {X1 /c}?t?R(c)failureСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПример обхода в глубину с возвратом.P : P(X , Y ) ← R(X ), Q(Y );P(X , X ) ← Q(X );?P(U,V ), R(U)tR(b) ←;@(1), {U/X1 , V /Y1 }(2), {U/X1 , V /X1 }@I@@Q(c) ←;R t?Q(X1 ), R(X1 )?R(X1 ), Q(Y1 ), R(X1 ) t@@(3), {X1 /b}6?Q(Y1 ), R(b) ?t(4), {Y1 /c}6?R(b) ?t6(3), ε?t?6(2), {X1 /c}?t?R(c)failureСТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММСтратегия обхода в глубину с возвратомIимеет эффективную реализацию: в памяти нужно хранитьлишь запросы той ветви, по которой идет обход, и каждыйзапрос должен вести учет использованных программныхутверждений;Iявляется, к сожалению, вычислительно неполной.ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММ.Обратимся к примеру 2.t?P(X Y ).P : P(X L) ← P(L), R(X );P(nil) ←;R(a) ←;R(c) ←;(1), {X1 /X , L1 /Y }(1), {Y /X2(1), {L2 /X3(1), {L3 /X4(1), {L4 /X5....?t?P(Y ), R(X )L2 }t?P(L2 ), R(X2 ), R(X )L3 }t?P(L3 ), R(X3 ), R(X2 ), R(X )L4 }t?P(L4 ), R(X4 ), R(X3 ), R(X2 ), R(X )L5 }∞ Обход дерева TG ,P уходит в глубинупо бесконечной ветви и не может возвратиться,чтобы обнаружить успешное вычисление.СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММСтратегия обхода в глубину с возвратом чувствительна кпорядку расположения программных утверждений в логическихпрограммах.

Результат вычисления запроса может существенноизмениться при перестановке программных утверждений.ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММЕще раз пример 2.P : P(nil) ←;P(X L) ← P(L), R(X );R(a) ←;R(c) ←;..t?P(X Y )ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММ.Еще раз пример 2.P : P(nil) ←;P(X L) ← P(L), R(X );R(a) ←;R(c) ←;.t?P(X Y )(2), {X1 /X , L1 /Y }?t?P(Y ), R(X )ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММ.Еще раз пример 2.P : P(nil) ←;P(X L) ← P(L), R(X );R(a) ←;R(c) ←;.t?P(X Y )(2), {X1 /X , L1 /Y }?t?P(Y ), R(X )(1), {Y /nil}?R(X ) tДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММ.Еще раз пример 2.P : P(nil) ←;P(X L) ← P(L), R(X );R(a) ←;R(c) ←;.t?P(X Y )(2), {X1 /X , L1 /Y }?t?P(Y ), R(X )(1), {Y /nil}?R(X ) t(3), {X /a}t?ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММ.Еще раз пример 2.P : P(nil) ←;P(X L) ← P(L), R(X );R(a) ←;R(c) ←;.t?P(X Y )(2), {X1 /X , L1 /Y }?t?P(Y ), R(X )(1), {Y /nil}?R(X ) t(3), {X /a}t?ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММ.Еще раз пример 2.P : P(nil) ←;P(X L) ← P(L), R(X );R(a) ←;R(c) ←;.t?P(X Y )(2), {X1 /X , L1 /Y }?t?P(Y ), R(X )(1), {Y /nil}?R(X ) t(3), {X /a}t?(4), {X /c}t??ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММ.Еще раз пример 2.P : P(nil) ←;P(X L) ← P(L), R(X );R(a) ←;R(c) ←;.t?P(X Y )(2), {X1 /X , L1 /Y }?t?P(Y ), R(X )(1), {Y /nil}?R(X ) t6(4), {X /c}tt?(3), {X /a}??ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММ.Еще раз пример 2.P : P(nil) ←;P(X L) ← P(L), R(X );R(a) ←;R(c) ←;.t?P(X Y )(2), {X1 /X , L1 /Y }??P(Y ), R(X )t*(1), {Y /nil}?R(X ) t6(3), {X /a}t?(4), {X /c}t??ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММ.Еще раз пример 2.P : P(nil) ←;P(X L) ← P(L), R(X );R(a) ←;R(c) ←;.t?P(X Y )(2), {X1 /X , L1 /Y }??P(Y ), R(X )t* (2), {Y /X2 L2 }t??P(L2 ), R(X2 ), R(X )(1), {Y /nil}?R(X ) t6(3), {X /a}t?(4), {X /c}t??.ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММ.Еще раз пример 2.P : P(nil) ←;P(X L) ← P(L), R(X );R(a) ←;R(c) ←;.t?P(X Y )(2), {X1 /X , L1 /Y }??P(Y ), R(X )t* (2), {Y /X2 L2 }t??P(L2 ), R(X2 ), R(X )(1), {Y /nil}(1), {L2 /nil} ?R(X2 ), R(X ) t?R(X ) t6(3), {X /a}t?(4), {X /c}t??.ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММ.Еще раз пример 2.P : P(nil) ←;P(X L) ← P(L), R(X );R(a) ←;R(c) ←;.t?P(X Y )(2), {X1 /X , L1 /Y }??P(Y ), R(X )t* (2), {Y /X2 L2 }t??P(L2 ), R(X2 ), R(X )(1), {Y /nil}(1), {L2 /nil} ?R(X2 ), R(X ) t?R(X ) t(3), {X2 /a}6?R(X ) t(3), {X /a}t?(4), {X /c}t??.ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММ.Еще раз пример 2.P : P(nil) ←;P(X L) ← P(L), R(X );R(a) ←;R(c) ←;.t?P(X Y )(2), {X1 /X , L1 /Y }??P(Y ), R(X )t* (2), {Y /X2 L2 }t??P(L2 ), R(X2 ), R(X )(1), {Y /nil}(1), {L2 /nil} ?R(X2 ), R(X ) t?R(X ) t(3), {X2 /a}6?R(X ) t(3), {X /a}t?(4), {X /c}t?(3), {X /a}?t?.ДЕРЕВЬЯ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММ.Еще раз пример 2.t?P(X Y )P : P(nil) ←;P(X L) ← P(L), R(X );R(a) ←;R(c) ←;.(2), {X1 /X , L1 /Y }??P(Y ), R(X )t* (2), {Y /X2 L2 }t??P(L2 ), R(X2 ), R(X )(1), {Y /nil}(1), {L2 /nil} ?R(X2 ), R(X ) t?R(X ) t(3), {X2 /a}6?R(X ) t(3), {X /a}t?.И Т.

Д.(4), {X /c}t?(3), {X /a}?t?СТРАТЕГИИ ВЫЧИСЛЕНИЙ ЛОГИЧЕСКИХПРОГРАММПоскольку соображения эффективности превалируют надтребованиями вычислительной полноты, в качествестандартной стратегии вычисления логических программбыла выбрана стратегия обхода в глубину с возвратом.Программист должен сам позаботиться о надлежащем порядкерасположения программных утверждений, чтобы стандартнаястратегия вычисления позволяла отыскать все вычисленныеответы.КОНЕЦ ЛЕКЦИИ 14..

Характеристики

Тип файла
PDF-файл
Размер
672,34 Kb
Тип материала
Высшее учебное заведение

Список файлов лекций

В.А
6. Общая схема метода резолюций. Равносильные формулы. Теорема о равносильной замене. Предваренная нормальная форма. Сколемовская стандартная форма. Системы дизъюнкт.pdf
12. Хорновские логические программы - синтаксис. Декларативная семантика логических программ. Операционная семантика логических программ. SLD-резолютивные вычисления.pdf
17. Отрицание в логическом программировании. Оператор not. Встроенные предикаты и функции. Оператор вычисления значений. Модификация баз данных.pdf
20. Правильные программы. Императивные программы. Задача верификации программ. Логика Хоара. Автоматическая проверка правильности программ.pdf
21. Верификация распределённых программ. Логика линейного времени PLTL. Размеченные системы переходов. Задача верификации моделей программ.pdf
22. Задача верификации моделей программ. Подформулы Фишера-Ландера. Табличный метод верификации моделей программ. Алгоритм верификации моделей программ.pdf
23. Как устроена математика. Исчисление предикатов первого порядка. Аксиоматические теории. Элементарная геометрия. Теория множеств Цермело-Френкеля.pdf
Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее