Главная » Просмотр файлов » 5. Полнота табличного вывода. Теорема Левенгейма-Сколема. Теорема компактности Мальцева. Автоматическое доказательство теорем

5. Полнота табличного вывода. Теорема Левенгейма-Сколема. Теорема компактности Мальцева. Автоматическое доказательство теорем (1158020)

Файл №1158020 5. Полнота табличного вывода. Теорема Левенгейма-Сколема. Теорема компактности Мальцева. Автоматическое доказательство теорем (В.А. Захаров - Лекции)5. Полнота табличного вывода. Теорема Левенгейма-Сколема. Теорема компактности Мальцева. Автоматическое доказательство теорем (1158020)2019-09-18СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Основыматематическойлогики и логическогопрограммированияЛЕКТОР: В.А. Захаровzakh@cs.msu.suhttp://mathcyb.cs.msu.su/courses/logprog.htmlЛекция 5.Полнота табличного вывода.Теорема Левенгейма-Сколема.Теорема компактности Мальцева.Автоматическое доказательствотеорем.ПОЛНОТА ТАБЛИЧНОГО ВЫВОДАТеорема полноты табличного выводаЕсли семантическая таблица T0 невыполнима, то для T0существует успешный табличный вывод.Доказательство.Проведем для упрощенного частного случая таблицы T0 , вкоторойIимеется лишь конечное число формул,Iвсе формулы замкнутые,Iв формулах нет функциональных символов.Пусть T0 = h Γ0 | ∆0 i — невыполнимая таблица.

Будемстроить табличный вывод для T0 , руководствуясь следующейстратегией.ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА1). Каждая незакрытая таблица в дереве вывода получаетпорядковый номер, и правила табличного выводаприменяются к таблицам в порядке возрастания ихномеров.ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА1). Каждая незакрытая таблица в дереве вывода получаетпорядковый номер, и правила табличного выводаприменяются к таблицам в порядке возрастания ихномеров.yT0ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА1). Каждая незакрытая таблица в дереве вывода получаетпорядковый номер, и правила табличного выводаприменяются к таблицам в порядке возрастания ихномеров.Ty1yT0@@@R yT@2ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА1). Каждая незакрытая таблица в дереве вывода получаетпорядковый номер, и правила табличного выводаприменяются к таблицам в порядке возрастания ихномеров.yT0@@@R yT@2Ty3Ty1@@@R yT@4ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА1).

Каждая незакрытая таблица в дереве вывода получаетпорядковый номер, и правила табличного выводаприменяются к таблицам в порядке возрастания ихномеров.Ty3yT0@@@R yT@Ty12@@@@@@R yT@R yT@4закр. табл.ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА1). Каждая незакрытая таблица в дереве вывода получаетпорядковый номер, и правила табличного выводаприменяются к таблицам в порядке возрастания ихномеров.Ty3yT0@@@R yT@Ty12@@@@@@R yT@R yT@4закр. табл.?yTзакр. табл.ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА1). Каждая незакрытая таблица в дереве вывода получаетпорядковый номер, и правила табличного выводаприменяются к таблицам в порядке возрастания ихномеров.Ty3yT0@@@R yT@Ty12@@@@@@R yT@R yT@4закр. табл.?yTзакр.

табл.?yT5и. т. д.ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА2). Таблицы состоят из упорядоченных множеств формул(списков). Правила применяются к формулам в порядке ихрасположения в списках. Формулы, участвующие вприменении правил, помещаются в хвост нужного списка.Атомарные формулы просто переходят из головы списка вего хвост.ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА2). Таблицы состоят из упорядоченных множеств формул(списков). Правила применяются к формулам в порядке ихрасположения в списках. Формулы, участвующие вприменении правил, помещаются в хвост нужного списка.Атомарные формулы просто переходят из головы списка вего хвост.T0 = h ∀xϕ, ψ1 → ψ2 , Γ | χ1 ∨ χ2 , ∆ iПОЛНОТА ТАБЛИЧНОГО ВЫВОДА2).

Таблицы состоят из упорядоченных множеств формул(списков). Правила применяются к формулам в порядке ихрасположения в списках. Формулы, участвующие вприменении правил, помещаются в хвост нужного списка.Атомарные формулы просто переходят из головы списка вего хвост.T0 = h ∀xϕ, ψ1 → ψ2 , Γ | χ1 ∨ χ2 , ∆ iПОЛНОТА ТАБЛИЧНОГО ВЫВОДА2). Таблицы состоят из упорядоченных множеств формул(списков).

Правила применяются к формулам в порядке ихрасположения в списках. Формулы, участвующие вприменении правил, помещаются в хвост нужного списка.Атомарные формулы просто переходят из головы списка вего хвост.T0 = h ∀xϕ, ψ1 → ψ2 , Γ | χ1 ∨ χ2 , ∆ i(L∀)?T1 = h ψ1 → ψ2 , Γ, ∀xϕ, ϕ0 | χ1 ∨ χ2 , ∆ iПОЛНОТА ТАБЛИЧНОГО ВЫВОДА2). Таблицы состоят из упорядоченных множеств формул(списков). Правила применяются к формулам в порядке ихрасположения в списках. Формулы, участвующие вприменении правил, помещаются в хвост нужного списка.Атомарные формулы просто переходят из головы списка вего хвост.T0 = h ∀xϕ, ψ1 → ψ2 , Γ | χ1 ∨ χ2 , ∆ i(L∀)?T1 = h ψ1 → ψ2 , Γ, ∀xϕ, ϕ0 | χ1 ∨ χ2 , ∆ iПОЛНОТА ТАБЛИЧНОГО ВЫВОДА2).

Таблицы состоят из упорядоченных множеств формул(списков). Правила применяются к формулам в порядке ихрасположения в списках. Формулы, участвующие вприменении правил, помещаются в хвост нужного списка.Атомарные формулы просто переходят из головы списка вего хвост.T0 = h ∀xϕ, ψ1 → ψ2 , Γ | χ1 ∨ χ2 , ∆ i(L∀)?T1 = h ψ1 → ψ2 , Γ, ∀xϕ, ϕ0 | χ1 ∨ χ2 , ∆ i(R∨)?T2 = h ψ1 → ψ2 , Γ, ∀xϕ, ϕ0 | ∆, χ1 , χ2 iПОЛНОТА ТАБЛИЧНОГО ВЫВОДА2). Таблицы состоят из упорядоченных множеств формул(списков). Правила применяются к формулам в порядке ихрасположения в списках.

Формулы, участвующие вприменении правил, помещаются в хвост нужного списка.Атомарные формулы просто переходят из головы списка вего хвост.T0 = h ∀xϕ, ψ1 → ψ2 , Γ | χ1 ∨ χ2 , ∆ i(L∀)?T1 = h ψ1 → ψ2 , Γ, ∀xϕ, ϕ0 | χ1 ∨ χ2 , ∆ i(R∨)?T2 = h ψ1 → ψ2 , Γ, ∀xϕ, ϕ0 | ∆, χ1 , χ2 iПОЛНОТА ТАБЛИЧНОГО ВЫВОДА2). Таблицы состоят из упорядоченных множеств формул(списков).

Правила применяются к формулам в порядке ихрасположения в списках. Формулы, участвующие вприменении правил, помещаются в хвост нужного списка.Атомарные формулы просто переходят из головы списка вего хвост.T0 = h ∀xϕ, ψ1 → ψ2 , Γ | χ1 ∨ χ2 , ∆ i(L∀)?T1 = h ψ1 → ψ2 , Γ, ∀xϕ, ϕ0 | χ1 ∨ χ2 , ∆ i(R∨)?T2 = h ψ1 → ψ2 , Γ, ∀xϕ, ϕ0 | ∆, χ1 , χ2 iPPPP(L →))PqT3 = h Γ, ∀xϕ, ϕ0 , ψ2 | ∆, χ1 , χ2 i T4 = hΓ, ∀xϕ, ϕ0 | ∆, χ1 , χ2 , ψ1 iПОЛНОТА ТАБЛИЧНОГО ВЫВОДА2).

Таблицы состоят из упорядоченных множеств формул(списков). Правила применяются к формулам в порядке ихрасположения в списках. Формулы, участвующие вприменении правил, помещаются в хвост нужного списка.Атомарные формулы просто переходят из головы списка вего хвост.T0 = h ∀xϕ, ψ1 → ψ2 , Γ | χ1 ∨ χ2 , ∆ i(L∀)?T1 = h ψ1 → ψ2 , Γ, ∀xϕ, ϕ0 | χ1 ∨ χ2 , ∆ i(R∨)?T2 = h ψ1 → ψ2 , Γ, ∀xϕ, ϕ0 | ∆, χ1 , χ2 iPP(L →)PP)PqT3 = h Γ, ∀xϕ, ϕ0 , ψ2 | ∆, χ1 , χ2 i T4 = hΓ, ∀xϕ, ϕ0 | ∆, χ1 , χ2 , ψ1 iи. т.

д.ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА3). С каждой таблицей T ассоциирован списокиспользованных констант LT . Вначале в этот списоквключаются все константы, содержащиеся в таблице T0 .В случае применения правил (L∃) и (R∀) в списокпорожденной таблицы добавляется «свежая константа».В остальных случаях список наследуется без изменений.ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА3).

С каждой таблицей T ассоциирован списокиспользованных констант LT . Вначале в этот списоквключаются все константы, содержащиеся в таблице T0 .В случае применения правил (L∃) и (R∀) в списокпорожденной таблицы добавляется «свежая константа».В остальных случаях список наследуется без изменений.T0 = h ∃xϕ(x), ψ1 → ψ2 , Γ | ∀y χ(y ), ∆ i,L0 = {c 0 , c 00 }ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА3).

С каждой таблицей T ассоциирован списокиспользованных констант LT . Вначале в этот списоквключаются все константы, содержащиеся в таблице T0 .В случае применения правил (L∃) и (R∀) в списокпорожденной таблицы добавляется «свежая константа».В остальных случаях список наследуется без изменений.T0 = h ∃xϕ(x), ψ1 → ψ2 , Γ | ∀y χ(y ), ∆ i,L0 = {c 0 , c 00 }ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА3). С каждой таблицей T ассоциирован списокиспользованных констант LT . Вначале в этот списоквключаются все константы, содержащиеся в таблице T0 .В случае применения правил (L∃) и (R∀) в списокпорожденной таблицы добавляется «свежая константа».В остальных случаях список наследуется без изменений.T0 = h ∃xϕ(x), ψ1 → ψ2 , Γ | ∀y χ(y ), ∆ i,(L∃)?T1 = h ψ1 → ψ2 , Γ, ϕ(c1 ) | ∀y χ(y ), ∆ i,L0 = {c 0 , c 00 }L1 = {c 0 , c 00 , c1 }ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА3).

С каждой таблицей T ассоциирован списокиспользованных констант LT . Вначале в этот списоквключаются все константы, содержащиеся в таблице T0 .В случае применения правил (L∃) и (R∀) в списокпорожденной таблицы добавляется «свежая константа».В остальных случаях список наследуется без изменений.T0 = h ∃xϕ(x), ψ1 → ψ2 , Γ | ∀y χ(y ), ∆ i,(L∃)?T1 = h ψ1 → ψ2 , Γ, ϕ(c1 ) | ∀y χ(y ), ∆ i,L0 = {c 0 , c 00 }L1 = {c 0 , c 00 , c1 }ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА3). С каждой таблицей T ассоциирован списокиспользованных констант LT . Вначале в этот списоквключаются все константы, содержащиеся в таблице T0 .В случае применения правил (L∃) и (R∀) в списокпорожденной таблицы добавляется «свежая константа».В остальных случаях список наследуется без изменений.T0 = h ∃xϕ(x), ψ1 → ψ2 , Γ | ∀y χ(y ), ∆ i,(L∃)L0 = {c 0 , c 00 }?L1 = {c 0 , c 00 , c1 }?L2 = {c 0 , c 00 , c1 , c2 }T1 = h ψ1 → ψ2 , Γ, ϕ(c1 ) | ∀y χ(y ), ∆ i,(R∀)T2 = h ψ1 → ψ2 , Γ, ϕ(c1 ) | ∆, χ(c2 ) i,ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА3).

С каждой таблицей T ассоциирован списокиспользованных констант LT . Вначале в этот списоквключаются все константы, содержащиеся в таблице T0 .В случае применения правил (L∃) и (R∀) в списокпорожденной таблицы добавляется «свежая константа».В остальных случаях список наследуется без изменений.T0 = h ∃xϕ(x), ψ1 → ψ2 , Γ | ∀y χ(y ), ∆ i,(L∃)L0 = {c 0 , c 00 }?L1 = {c 0 , c 00 , c1 }?L2 = {c 0 , c 00 , c1 , c2 }T1 = h ψ1 → ψ2 , Γ, ϕ(c1 ) | ∀y χ(y ), ∆ i,(R∀)T2 = h ψ1 → ψ2 , Γ, ϕ(c1 ) | ∆, χ(c2 ) i,ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА3).

С каждой таблицей T ассоциирован списокиспользованных констант LT . Вначале в этот списоквключаются все константы, содержащиеся в таблице T0 .В случае применения правил (L∃) и (R∀) в списокпорожденной таблицы добавляется «свежая константа».В остальных случаях список наследуется без изменений.T0 = h ∃xϕ(x), ψ1 → ψ2 , Γ | ∀y χ(y ), ∆ i,(L∃)?L1 = {c 0 , c 00 , c1 }?L2 = {c 0 , c 00 , c1 , c2 }T1 = h ψ1 → ψ2 , Γ, ϕ(c1 ) | ∀y χ(y ), ∆ i,(R∀)T2 = h ψ1 → ψ2 , Γ, ϕ(c1 ) | ∆, χ(c2 ) i,PP(L →)PP)qPT3 = h Γ, ϕ(c1 ), ψ2 | ∆, χ(c2 ) iL3 = {c 0 , c 00 , c1 , c2 }L0 = {c 0 , c 00 }T4 = hΓ, ϕ(c1 ) | ∆, χ(c2 ), ψ1 iL4 = {c 0 , c 00 , c1 , c2 }ПОЛНОТА ТАБЛИЧНОГО ВЫВОДА3). С каждой таблицей T ассоциирован списокиспользованных констант LT . Вначале в этот списоквключаются все константы, содержащиеся в таблице T0 .В случае применения правил (L∃) и (R∀) в списокпорожденной таблицы добавляется «свежая константа».В остальных случаях список наследуется без изменений.T0 = h ∃xϕ(x), ψ1 → ψ2 , Γ | ∀y χ(y ), ∆ i,(L∃)L0 = {c 0 , c 00 }?L1 = {c 0 , c 00 , c1 }?L2 = {c 0 , c 00 , c1 , c2 }T1 = h ψ1 → ψ2 , Γ, ϕ(c1 ) | ∀y χ(y ), ∆ i,(R∀)T2 = h ψ1 → ψ2 , Γ, ϕ(c1 ) | ∆, χ(c2 ) i,PP(L →)PP)qPT3 = h Γ, ϕ(c1 ), ψ2 | ∆, χ(c2 ) iT4 = hΓ, ϕ(c1 ) | ∆, χ(c2 ), ψ1 iL3 = {c 0 , c 00 , c1 , c2 }L4 = {c 0 , c 00 , c1 , c2 }и.

Характеристики

Тип файла
PDF-файл
Размер
540,85 Kb
Тип материала
Высшее учебное заведение

Тип файла PDF

PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.

Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.

Список файлов лекций

В.А
6. Общая схема метода резолюций. Равносильные формулы. Теорема о равносильной замене. Предваренная нормальная форма. Сколемовская стандартная форма. Системы дизъюнкт.pdf
12. Хорновские логические программы - синтаксис. Декларативная семантика логических программ. Операционная семантика логических программ. SLD-резолютивные вычисления.pdf
17. Отрицание в логическом программировании. Оператор not. Встроенные предикаты и функции. Оператор вычисления значений. Модификация баз данных.pdf
20. Правильные программы. Императивные программы. Задача верификации программ. Логика Хоара. Автоматическая проверка правильности программ.pdf
21. Верификация распределённых программ. Логика линейного времени PLTL. Размеченные системы переходов. Задача верификации моделей программ.pdf
22. Задача верификации моделей программ. Подформулы Фишера-Ландера. Табличный метод верификации моделей программ. Алгоритм верификации моделей программ.pdf
23. Как устроена математика. Исчисление предикатов первого порядка. Аксиоматические теории. Элементарная геометрия. Теория множеств Цермело-Френкеля.pdf
Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6274
Авторов
на СтудИзбе
316
Средний доход
с одного платного файла
Обучение Подробнее