Главная » Просмотр файлов » 13. Корректность операционной семантики. Полнота операционной семантики

13. Корректность операционной семантики. Полнота операционной семантики (1158026), страница 2

Файл №1158026 13. Корректность операционной семантики. Полнота операционной семантики (В.А. Захаров - Лекции) 2 страница13. Корректность операционной семантики. Полнота операционной семантики (1158026) страница 22019-09-18СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

. .∨¬Ak1∨¬C20∨. . .∨¬Cn0ЛЕММА ОБ ОСНОВНЫХ ВЫЧИСЛЕНИЯХДоказательство леммы о вычислениях.Да, пустой дизъюнкт можно резолютивно вывести изсистемы0 , ¬C 0 ∨ ¬C 0 ∨ · · · ∨ ¬C 0 }.{D10 , D20 , . . . , DMn12Но это не обязательно SLD-резолютивный вывод. Рассмотримего более подробно.негативные дизъюнктысмешанные дизъюнктыD10 = A01 ∨ ¬A11 ∨ · · · ∨ ¬Ak10G00 = ¬C10 ∨ ¬C20 ∨ · · · ∨ ¬Cn0D2 = A02 ∨ ¬A12 ∨ · · · ∨ ¬Ar 2?u... 0 =ADM0M ∨ ¬A1M ∨ · · · ∨ ¬A`Mвозможны резольвенты двух типов@@А это не SLD-резольвента@R@¬A11∨. . .∨¬Ak1∨¬C20∨.

. .∨¬Cn0A02∨¬A22∨. . .∨¬Ar 2∨¬A11∨. . .∨¬Ak1ЛЕММА ОБ ОСНОВНЫХ ВЫЧИСЛЕНИЯХДоказательство леммы о вычислениях.Да, пустой дизъюнкт можно резолютивно вывести изсистемы0 , ¬C 0 ∨ ¬C 0 ∨ · · · ∨ ¬C 0 }.{D10 , D20 , . . . , DMn12Но это не обязательно SLD-резолютивный вывод. Рассмотримего более подробно.негативные дизъюнктысмешанные дизъюнктыD10 = A01 ∨ ¬A11 ∨ · · · ∨ ¬Ak1G00 = ¬C10 ∨ ¬C20 ∨ · · · ∨ ¬Cn0D20 = A02 ∨ ¬A12 ∨ · · · ∨ ¬Ar 2...0 =ADM∨0M ¬A1M ∨ · · · ∨ ¬A`Mвозможны резольвенты двух типов¬A11∨.

. .∨¬Ak1∨¬C20∨. . .∨¬Cn0A02∨¬A22∨. . .∨¬Ar 2∨¬A11∨. . .∨¬Ak1ЛЕММА ОБ ОСНОВНЫХ ВЫЧИСЛЕНИЯХДоказательство леммы о вычислениях.Покажем, что этот вывод можно перестроить так, чтобы в немостались только SLD-резольвенты. В этом выводе обязательноесть хотя бы одна SLD-резольвента (почему? ),ЛЕММА ОБ ОСНОВНЫХ ВЫЧИСЛЕНИЯХДоказательство леммы о вычислениях.Покажем, что этот вывод можно перестроить так, чтобы в немостались только SLD-резольвенты. В этом выводе обязательноесть хотя бы одна SLD-резольвента (почему? ), потому чтопустой дизъюнкт — это всегда SLD-резольвента (почему? ).ЛЕММА ОБ ОСНОВНЫХ ВЫЧИСЛЕНИЯХДоказательство леммы о вычислениях.Покажем, что этот вывод можно перестроить так, чтобы в немостались только SLD-резольвенты.

В этом выводе обязательноесть хотя бы одна SLD-резольвента (почему? ), потому чтопустой дизъюнкт — это всегда SLD-резольвента (почему? ).Тогда будем поступать так:¬C10 ∨ ¬C20 ∨ · · · ∨ ¬Cm0A00 ∨ ¬A01 ∨ · · · ∨ ¬A0kHHHHjA000 ∨ ¬A001 ∨ · · · ∨ ¬A00rA00 ∨ ¬A02 ∨ · · · ∨ ¬A0k ∨ ¬A001 ∨ · · · ∨ ¬A00rЕсли правило резолюции вначале применяетсяк двум программным утверждениям,ЛЕММА ОБ ОСНОВНЫХ ВЫЧИСЛЕНИЯХДоказательство леммы о вычислениях.Покажем, что этот вывод можно перестроить так, чтобы в немостались только SLD-резольвенты. В этом выводе обязательноесть хотя бы одна SLD-резольвента (почему? ), потому чтопустой дизъюнкт — это всегда SLD-резольвента (почему? ).Тогда будем поступать так:¬C10 ∨ ¬C20 ∨ · · · ∨ ¬Cm0A00 ∨ ¬A01 ∨ · · · ∨ ¬A0kA000 ∨ ¬A001 ∨ · · · ∨ ¬A00rH HHHjA0 ∨ ¬A0 ∨ · · · ∨ ¬A0k ∨ ¬A001 ∨ · · · ∨ ¬A00rXX0 2XXXXXz?¬A02 ∨ · · · ∨ ¬A0k ∨ ¬A001 ∨ · · · ∨ ¬A00r ∨ ¬C20 ∨ · · · ∨ ¬Cm0а затем применяется к полученной резольвенте и запросу,ЛЕММА ОБ ОСНОВНЫХ ВЫЧИСЛЕНИЯХДоказательство леммы о вычислениях.Покажем, что этот вывод можно перестроить так, чтобы в немостались только SLD-резольвенты.

В этом выводе обязательноесть хотя бы одна SLD-резольвента (почему? ), потому чтопустой дизъюнкт — это всегда SLD-резольвента (почему? ).Тогда будем поступать так:¬C10 ∨ ¬C20 ∨ · · · ∨ ¬Cm0A00 ∨ ¬A01 ∨ · · · ∨ ¬A0kA000 ∨ ¬A001 ∨ · · · ∨ ¬A00rHHHHHHj?H¬A01 ∨ ¬A02 ∨ · · · ∨ ¬A0k ∨ ¬C2 ∨ · · · ∨ ¬Cmто изменим порядок применения правилЛЕММА ОБ ОСНОВНЫХ ВЫЧИСЛЕНИЯХДоказательство леммы о вычислениях.Покажем, что этот вывод можно перестроить так, чтобы в немостались только SLD-резольвенты.

В этом выводе обязательноесть хотя бы одна SLD-резольвента (почему? ), потому чтопустой дизъюнкт — это всегда SLD-резольвента (почему? ).Тогда будем поступать так:¬C10 ∨ ¬C20 ∨ · · · ∨ ¬Cm0A00 ∨ ¬A01 ∨ · · · ∨ ¬A0kHHHA000 ∨ ¬A001 ∨ · · · ∨ ¬A00rHHHHHHHj?H00 ∨ · · · ∨ ¬A0 ∨ ¬C ∨ · · · ∨ ¬CH2mHH ¬A1 ∨ ¬A2kHjH¬A02 ∨ · · · ∨ ¬A0k ∨ ¬A001 ∨ · · · ∨ ¬A00r ∨ ¬C20 ∨ · · · ∨ Cm0и получим тот же самый результат,но уже только при помощи SLD-резолюции.ЛЕММА ОБ ОСНОВНЫХ ВЫЧИСЛЕНИЯХДоказательство.Будем применять этот прием, до тех пор пока в выводе неостанутся только правила SLD-резолюции.

Таким образом, витоге получим вывод пустого дизъюнкта из множествадизъюнктов{D1 , D2 , . . . , DN , ¬C10 ∨¬C2 ∨· · · ∨¬Cn0 }только при помощи правила SLD-резолюции.Это и есть успешное SLD-резолютивное вычисление основногозапроса G00 =?C10 , C20 , . . . Cn0 , обращенного к множеству основныхпримеров программных утверждений [P].Что и требовалось доказать.ЛЕММА О ПОДЪЕМЕЛемма о подъеме (для логических программ)Пусть G00 = G0 θ0 — основной пример запроса G0 с множествомцелевых переменных Y1 , .

. . , Ym , обращенный к хорновскойлогической программе P.Если запрос G00 , обращенный к множеству основных примеровпрограммных утверждений [P], имеет успешное вычисление,то исходный запрос G0 , обращенный к самой программе P,также имеет успешное вычисление с ответом η, которыйудовлетворяет равенствуθ0 = ηρ0для некоторой подстановки ρ0 .ЛЕММА О ПОДЪЕМЕДоказательство леммы о подъемеРассмотрим SLD-резолютивное вычисление запроса G00 = G0 θ0с использованием основных примеров программныхутверждений из множества [P](D10 , ε, G10 ), (D20 , ε, G20 ), . .

. , (Dn0 , ε, )и покажем, что существует SLD-резолютивное вычислениезапроса G0 с использованием программы P(D1 , η1 , G1 ), (D2 , η2 , G2 ), . . . , (Dn , ηn , ),удовлетворяющее условиям леммы.ЛЕММА О ПОДЪЕМЕG0ЛЕММА О ПОДЪЕМЕG0θ0?G0 θ0ЛЕММА О ПОДЪЕМЕG0D1θ0?G0 θ0D2µ1Dnµ2D10?D20AAAµn?ε AAU G 01εAAU G0A2?Dn0qqq0Gn−1AεAA-AU ЛЕММА О ПОДЪЕМЕ- G1G0η1D1θ0?G0 θ0q- G2qqGn−1η2ηnD2µ1Dnµ2D10?D20AAAµn?ε AAU G 01- εAAU G0A2?Dn0qqq0Gn−1AεAA-AU ЛЕММА О ПОДЪЕМЕ- G1G0η1D1θ0?G0 θ0q- G2qqGn−1η2ηnD2µ1Dnµ2D10?D20AAAµn?ε AAU G 01- εAAU G0A2?Dn0qqq0Gn−1θ0 = (η1η2 . . .

ηn)|Y1,...,Ym ρ0AεAA-AU ЛЕММА О ПОДЪЕМЕДоказательство леммы о подъемеВоспользуемся леммой о подъеме для обычных дизъюнктов.G0D1θ00µ1?G00?= G0θ0D10@@@@R@G10= D1 µ1ЛЕММА О ПОДЪЕМЕДоказательство леммы о подъемеВоспользуемся леммой о подъеме для обычных дизъюнктов.G0D1@@@θ00η1µ1@R@?G00= G0θ0G1@@@@R@G10?D10= D1 µ1ЛЕММА О ПОДЪЕМЕДоказательство леммы о подъемеВоспользуемся леммой о подъеме для обычных дизъюнктов.G0D1@@@θ00η1µ1@R@?G00= G0θ0G1?D10= D1 µ1ρ1@@@@R?@G10 = G1 ρ1ЛЕММА О ПОДЪЕМЕДоказательство леммы о подъемеВоспользуемся леммой о подъеме для обычных дизъюнктов.G0D1@@@θ00η1µ1@R@?G00= G0θ0G1?D10= D1 µ1ρ1@@@@R?@G10 = G1 ρ1И при этом верно равенство θ00 = (η1 ρ1 )|Y1 ,...,Ym .ЛЕММА О ПОДЪЕМЕДоказательство леммы о подъемеПоследовательно применяя этот прием на всех шагахвычисления запроса G00 , получаем SLD-резолютивноевычисление запроса G0 :(D1 , η1 , G1 ), (D2 , η1 , G2 ), . .

. , (Dn , ηn , )для которого выполняется система равенствθ0 = (η1 ρ1 )|Y1 ,...,Ymρ1 = (η2 ρ2 )|VarG1ρ2 = (η3 ρ3 )|VarG2...ρn = (ηn ρn )|VarGnИз этой системы следует равенство θ0 = (η1 η2 . . . ηn )|Y1 ,...,Ym ρ0для некоторой подстановки ρ0 .ПОЛНОТА ОПЕРАЦИОННОЙ СЕМАНТИКИДоказательство теоремы полноты (завершение).Итак, у нас естьIправильный ответ θ0 на запрос G0 к хорновскойлогической программе P;Iподстановка λ = {Z1 /c1 , Z2 /c2 , . . .

, Zr /cr } «свежих»констант на место всех переменных Z1 , . . . , Zr из термовподстановки θ0 .Iосновной пример θ00 = θ0 λ правильного ответа θ.ПОЛНОТА ОПЕРАЦИОННОЙ СЕМАНТИКИДоказательство теоремы полноты (завершение).θ0 — правильный ответ на запрос G0 к хорновской логическойпрограмме P;⇓P |= G0 θ0 λ;⇓(по лемме об основных вычислениях )основной запрос G0 θ0 λ к множеству основных примеровпрограммных утверждений [P] имеет успешное вычисление;⇓(по лемме о подъеме для логических программ )запрос G0 к программе P имеет успешное вычисление свычисленным ответом η, для которого верно равенствоθ0 λ = ηρ0для некоторой подстановки ρ0 .ПОЛНОТА ОПЕРАЦИОННОЙ СЕМАНТИКИДоказательство теоремы полноты (завершение).А теперь заменим в левой и правой частях равенстваθ0 λ = ηρ0все константы c1 , .

. . , cr на символы переменных Z1 , . . . , Zr .Поскольку константы c1 , . . . , cr не входят в состав запроса G0 ипрограммы P, эти константы не входят в состав термоввычисленного ответа η, и, значит, могут содержаться только вподстановке ρ0 .В левой части равенства подстановка λ = {Z1 /c1 , . . . , Zr /cr }превращается в пустую подстановку ε.В правой части равенства подстановка ρ0 превращается внекоторую новую подстановку ρ.В итоге равенство θ0 λ = ηρ0 превращается в равенствоθ0 = ηρПОЛНОТА ОПЕРАЦИОННОЙ СЕМАНТИКИПоясняющий пример.Рассмотрим запрос ?P(U, V ) к логической программеP : P(f (X ), X ) ← R(X ); (1)R(Y ) ←;(2)Q(c) ←;(3)Легко видеть, что θ = {U/f (c), V /c} — это правильный ответна запрос к программе.Вместе с тем, единственный вычисленный ответ — этоη = {U/f (Y ), V /Y }.Все дело в том, что θ — это частный случай η: θ = η{Y /c}.ПОЛНОТА ОПЕРАЦИОННОЙ СЕМАНТИКИИтак, любой правильный ответ на запрос к хорновскойлогической программе можно вычислить (возможно, собобщением) по правилу SLD-резолюции, и любойвычисленный ответ будет правильным.А как организовать вычисления логических программ, чтобывычислить ВСЕ ответы?КОНЕЦ ЛЕКЦИИ 13..

Характеристики

Тип файла
PDF-файл
Размер
481,4 Kb
Тип материала
Высшее учебное заведение

Список файлов лекций

В.А
6. Общая схема метода резолюций. Равносильные формулы. Теорема о равносильной замене. Предваренная нормальная форма. Сколемовская стандартная форма. Системы дизъюнкт.pdf
12. Хорновские логические программы - синтаксис. Декларативная семантика логических программ. Операционная семантика логических программ. SLD-резолютивные вычисления.pdf
17. Отрицание в логическом программировании. Оператор not. Встроенные предикаты и функции. Оператор вычисления значений. Модификация баз данных.pdf
20. Правильные программы. Императивные программы. Задача верификации программ. Логика Хоара. Автоматическая проверка правильности программ.pdf
21. Верификация распределённых программ. Логика линейного времени PLTL. Размеченные системы переходов. Задача верификации моделей программ.pdf
22. Задача верификации моделей программ. Подформулы Фишера-Ландера. Табличный метод верификации моделей программ. Алгоритм верификации моделей программ.pdf
23. Как устроена математика. Исчисление предикатов первого порядка. Аксиоматические теории. Элементарная геометрия. Теория множеств Цермело-Френкеля.pdf
Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее