Главная » Просмотр файлов » Лекции в ворде

Лекции в ворде (1156536), страница 16

Файл №1156536 Лекции в ворде (Лекции в ворде) 16 страницаЛекции в ворде (1156536) страница 162019-09-18СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 16)

собака (голди).

собака (фидо).

собака(реке).

то на запрос

?- bagof(D, co6aкa(D), L),

будет получен ответ

L=[реке, голди, фидо, рекс]

в то время как

?-setof(D, co6aкa(D), L). дает значение

L=[фидо, голди, рекc]

Пример: сложение многочленов

Теперь мы достаточно подготовлены к тому, чтобы использовать списки для решения задач. Вопрос, которым мы займемся, - пред­ставление и сложение многочленов.

Представление многочленов. Посмотрим, как можно предста­вить многочлен вида

Р(х)=3+3х-4х^3+2х^9

Q(х)=4х+х^2-3х^3+7х^4+8х^5

Заметим, что каждое подвыражение (такое, как Зх ^3, Зх, 3) имеет самое большее две переменные компоненты: число, стоящее перед х, называемое коэффициентом, и число, стоящее после ^ - сте­пень. Следовательно, подвыражение представляется термом

х(Коэффициент, Степень)

Так, 5х^2 записывается как х(5,2), х^З представляется как х(1,3), а поскольку х^0 равно 1, подвыражению 5 соответствует терм х(5,0).

Теперь запишем многочлен в виде списка. Приведенный выше многочлен Р(х), например, будет выглядеть следующим образом:

[x(3, 0), '+', x(3, l), '-', x(4, 3), '+', x(2, 9)]

Воспользуемся тем, что многочлен

3 + 3х - 4х^3 + 2х^9

допускает замену на эквивалентный

3 + 3х + (-4)х^3 + 2х^9 Тогда он выражается списком:

[х(3, 0), '+', х(3, 1), '+', х(-4, 3), '+', х(2, 9)]

В такой записи между термами всегда стоят знаки '+'. Следователь­но, их можно опустить, и многочлен принимает окончательный вид:

[х(3, 0), х(3, 1), х(-4, 3), х(2, 9)]

Подразумевается, что между всеми термами списка стоят знаки '+'. Представлением многочлена Q(x) будет

[х(4, 1), х(1, 2), х(-3, 3), х(7, 4), х(8, 5)]

Сложение многочленов. Теперь напишем целевые утверждения для сложения двух многочленов. Сложение многочленов

3-2х^2+4х^3+6х^6

-1+3х^2-4х^3

в результате дает

2+х^2+6х^6

Аргументами целевого утверждения являются многочлены, пред­ставленные в виде списков. Ответ будет получен также в виде списка.

Сложение многочлена Р с многочленом Q осуществляется следу­ющим образом:

Граничное условие:

Р, складываемый с [], дает Р.

[], складываемый с Q, дает Q.

Рекурсивное условие:

При сложении Р с Q, в результате чего получается многочлен R, возможны 4 случая:

а) степень первого терма в Р меньше, чем степень первого терма в Q. В этом случае первый терм многочлена Р образует первый терм в R, а хвост R получается при прибавлении хвоста Р к Q. Например, если Р и Q имеют вид

Р(х)=3х^2+5х^3

Q(x)=4x^3+3x^4

то первый терм R(x) равен 3х^2 (первому терму в Р(х)). Хвост R(x) равен 9х^3+3х^4, т.е. результату сложения Q(x) и хвоста Р(х);

б) степень первого терма в Р больше степени первого терма в Q. В данном случае первый терм в Q образует первый терм в R, а хвост R получается при прибавлении Р к хвосту Q. Например, если

Р(х)=2х^3+5х^'4

Q(x)=3x^3-x^4

то первый терм R(x) равен 3х^2 (первому терму в Q(x)), а хвост R(x) равен 2х^3+4х^4 (результату сложения Р(х) и хвоста Q(x));

в) степени первых термов в Р и Q равны, а сумма их коэффици­ентов отлична от нуля. В таком случае первый терм в R имеет коэф­фициент, равный сумме коэффициентов первых термов в Р и Q. Сте­пень первого терма в R равна степени первого терма в Р (или Q). Хвост R получается при сложении хвоста Р и хвоста Q. Например, если Р и Q имеют вид

Р(х)=2х+3х^3

Q(x)=3x+4x^4

то первый терм многочлена R (х) равен 5х (результату сложения пер­вого терма в Р(х) с первым термом в Q(x)). Хвост R(x) равен 3х^3+4х^4 (результату сложения хвоста Р(х) и хвоста Q(x));

г) степени первых термов в Р и Q одинаковы, но сумма коэффи­циентов равна нулю. В данном случае многочлен R равен результату сложения хвоста Р с хвостом Q. Например, если

р(х)=2+2х

Q(x)=2-3x^2

то

R(x)=2x-3x^2

(это результат сложения хвостов многочленов Р (х) и Q (х)).

Рассмотренный процесс сложения многочленов можно непосред­ственно записать на языке Пролог:

/* Граничные условия

слож_мн([], Q Q).

слож_мн(P, [], P).

/* Рекурсивное условие

/* (a)

слож_мн([x(Pc, Pp)|Pt], [x(Qc, Qp)|Qt],

[x(Pc,Pp)IRt]) :-

PpQp,

слож_мн(Рt, [х(Qс,Qр) | Qt], Rt).

/*(б)

слож_мн([x(Pc, Pp) | Pt], [x(Qc, Qp) | Qt],

[x(Qc, Qp) | Rt]) :-

PpQp,

слож_мн([x(Pc, Pp) | Pt], Qt, Rt).

/*(в)

слож_мн([x(Pc, Pp) | Pt], [х(Qc,Pp) | Qt],

[x(Rc, Pp) | Rt]) :-

Rc is Pc+Qc,

Rc =\= 0,

слож_мн(Pt, Qt,Rt).

/*(r)

слож_мн([х(Рс, Рр) | Pt],

[x(Qc.Pp) | Qt], Rt) :-

Re is Pc+Qc,

Rc =:= 0,

слож_мн(Pt, Qt, Rt).

Заметим, что в двух последних утверждениях проверка на равен­ство осуществляется следующим образом: степени первых термов складываемых утверждений обозначает одна и та же переменная Pp.

Списки как термы. В начале главы мы упомянули о том, что спи­сок представляется с помощью терма. Такой терм имеет функтор '.', Два аргумента и определяется рекурсивно. Первый аргумент являет­ся головой списка, а второй - термом, обозначающим хвост списка. Пустой список обозначается []. Тогда список [а, b] эквивалентен терму.(а,.(b, [])).

Таким образом, из списков, как и из термов, можно создавать вложенные структуры. Поэтому выражение

[[a, b], [c, d], [a], a]

есть правильно записанный список, и на запрос

?- [Н | Т]=[[а, b], с].

Пролог дает ответ

Н=[а, b]

Т=[с]

Бинарные деревья

ПРЕДСТАВЛЕНИЕ БИНАРНЫХ ДЕРЕВЬЕВ

Бинарное дерево определяется рекурсивно как имеющее левое поддерево, корень и правое поддерево. Левое и правое поддеревья са­ми являются бинарными деревьями. На Рис. 14 показан пример би­нарного дерева.

Рис. 14. Бинарное дерево.

Такие деревья можно представить термами вида

бд(Лд, К, Пд),

где Лд - левое поддерево, К - корень, а Пд - правое поддерево. Дл» обозначения пустого бинарного дерева будем использовать атом nil. Бинарное дерево на рис.5.2.1 имеет левое поддерево

бд(бд(nil, d, nil), b, бд(nil, е, nil))

правое поддерево

бд(nil,с, nil)

и записывается целиком как

бд(бд(бд(nil,d, nil), b, бд(nil,е, nil)), а, бд(nil, с, nil)).

ПРЕДСТАВЛЕНИЕ МНОЖЕСТВ С ПОМОЩЬЮ БИНАРНЫХ ДЕРЕВЬЕВ

Описание множеств в виде списков позволяет использовать для множеств целевое утверждение принадлежит, определенное ранее для списков.

Однако для множеств, состоящих из большого числа элементов, списковые целевые утверждения становятся неэффективными. Рас­смотрим, например, как целевое утверждение принадлежит (см. предыдущий разд.) позволяет моделировать принадлежность множеству. Пусть L - список, описывающий множество из первых 1024 нату­ральных чисел. Тогда при ответе на запрос

?- принадлежит(3000, b).

Прологу придется проверить все 1024 числа, прежде чем заключить, что такого числа нет:

нет

Представление множества бинарным деревом позволяет добиться лучшего результата. При этом бинарное дерево должно быть упоря­дочено таким образом, чтобы любой элемент в левом поддереве был меньше, чем значение корня, а любой элемент в правом поддереве — больше. Поскольку мы определили поддерево как бинарное дерево, такое упорядочение применяется по всем поддеревьям. На Рис. 15 приведен пример упорядоченного бинарного дерева.

Дерево на Рис. 14 является неупорядоченным.

Рис. 15. Упорядоченное бинарное дерево.

Обратите внимание, что упорядочение приводит не к единствен­ному варианту представления множества с помощью дерева. Напри­мер, на Рис. 16 изображено то же множество, что и на Рис. 15.

Будем называть линейным представление такого вида, как на Рис. 16, и сбалансированным - такое, как на Рис. 15.

Рис. 16. Линейное представление.

Моделирование принадлежности множеству. Имея множество, описанное бинарным деревом, мы можем моделировать принадлежность множеству с помощью целевого утверждения принадлежит_дереву. При этом используется оператор @<, выражающий от­ношение «меньше, чем», и оператор @>, выражающий отношение «больше, чем».

/* Граничное условие: Х принадлежит

/* дереву, если Х является корнем.

принадлежит_дереву(Х, бд(Лд, Х, Пд)),

/* Рекурсивные условия

/* Х принадлежит дереву, если Х больше

/* значении корня и находится в правом

/* поддереве:

принадлсжит_дереву(Х, бд(Лд, У, Пд)) :- X@Y,

припадлежит_дереву(Х, Пд).

/* Х принадлежит дереву, если Х меньше

/* значения корня и находится в левом

/* поддереве:

принадлежит_дереву(Х, бд(Лд ,У ,Пд)) :-X@Y,

принадлежит_дереву(Х, Лд).

Если множество из первых 1024 чисел описать с помощью сба­лансированного бинарного дерева Т, то при ответе на запрос

?- принадлежит_дереву(3000, Т).

Пролог сравнит число 3000 не более чем с 11 элементами множества. прежде чем ответит:

нет

Конечно, если Т имеет линейное представление, то потребуется сравнение 3000 с 1024 элементами множества.

Построение бинарного дерева. Задача создания упорядоченного бинарного дерева при добавлении элемента Х к другому упорядочен­ному бинарному дереву формулируется следующим образом:

Граничное условие:

Добавление Х к nil дает бд(nil, Х, nil).

Рекурсивные условия:

При добавлении Х к бд(Лд, К, Пд) нужно рассмотреть два случая, чтобы быть уверенным, что результирующее дерево будет упорядо­ченным.

1. Х меньше,чем К. В этом случае нужно добавить Х к Лд, чтобы получить левое поддерево. Правое поддерево равно Пд, а значение корня результирующего дерева равно К.

2. Х больше, чем К. В таком случае нужно добавить Х к Пд, что­бы получить правое поддерево. Левое поддерево равно Лд, а значе­ние корня - К.

Такой формулировке задачи соответствует программа:

/* Граничное условие:

включ_бд(nil, Х, бд(nil, Х, nil)).

/* Рекурсивные условия:

/*(1)

включ_бд(бд(Лд, К, Пд), Х, бд(Лднов, К, Пд)) :-

Х@К,

включ_бд(Лд,Х,Лднов).

/*(2)

включ_бд(бд(Лд, К, Пд), Х, бд(Лд, К, Пднов)) :-

Х@К,

включ_бд(Пд, Х, Пднов).

На запрос

?- включ_бд(nil, d, Т1), включ_бд(Т1, а, Т2).

будут получены значения

Т1=бд(nil, d, nil)

Т2=бд(бд(nil, а, nil), d, nil)

Процедуру включ_бд() можно использовать для построения упо­рядоченного дерева из списка:

/* Граничное условие:

список_в_дерево([], nil).

/* Рекурсивное условие:

список_в_дерево([Н | Т], Бд) :-

список_в_дерево(Т, Бд2),

включ_бд(Н, Бд2, Бд).

Заметим, что включ_бд не обеспечивает построения сбалансиро­ванного дерева. Однако существуют алгоритмы, гарантирующие та­кое построение.

Механизм возврата и процедурная семантика

При согласовании целевого утверждения в Прологе используется метод, известный под названием механизма возврата. В этой главе мы показываем, в каких случаях применяется механизм возврата, как он работает и как им пользоваться. Описывается декларативная и процедурная семантика процедур Пролога. Завершается глава об­суждением вопросов эффективности.

Механизм возврата

При попытке согласования целевого утверждения Пролог выби­рает первое из тех утверждений, голова которых сопоставима с целе­вым утверждением. Если удастся согласовать тело утверждения, то целевое утверждение согласовано. Если нет, то Пролог переходит к следующему утверждению, голова которого сопоставима с целевым утверждением, и так далее до тех пор, пока целевое утверждение не будет согласовано или не будет доказано, что оно не согласуется с ба­зой данных.

В качестве примера рассмотрим утверждения:

меньше(X.Y) :-

XY, write(X),

write ('меньше, чем'),write(Y).

меньше(Х.У) :-

Характеристики

Тип файла
Документ
Размер
892 Kb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6353
Авторов
на СтудИзбе
311
Средний доход
с одного платного файла
Обучение Подробнее