Автореферат (1155083), страница 3
Текст из файла (страница 3)
On TruncationsFor A Class Of Finite Markovian Queuing Models. 2015. Proceedings 29thEuropean Conference on Modeling and Simulation, ECMS, Varna, Bulgaria. p.626-630.4. Satin, Ya., Korotysheva, A., Kiseleva, K., Shilova, G., Fokicheva, E., Zeifman,A., Korolev, V. Two-sided truncations of inhomogeneous birth-death processes. 2016. Proceedings 30th European Conference on Modeling and Simulation, ECMS,Regensburg, Germany, p.
663-668.5. Zeifman, A., Satin Ya., Korotysheva, A., Shilova, G., Kiseleva, K., Korolev,V., Bening, V., Shorgin, S. Ergodicity bounds for birth-death processes withparticularities. 2016. AIP Conference Proceedings, 1738, 220006; doi:10.1063/1.4952005.6. Kiseleva, K., Satin, Ya., Korotysheva, A., Zeifman A., Korolev, V., Shorgin, S.On the Null Ergodicity Bounds for a Retrial Queueing Model.
AIP ConferenceProceedings: Proc. of the 12th International Conference of Numerical Analysis andApplied Mathematics ICNAAM-2016. USA, AIP Publishing. 2017.7. Zeifman, A., Korolev, V., Korotysheva, A., Satin, Ya., Kiseleva, K., Shorgin,S. Bounds for Markovian queues with possible catastrophes. 2017. Proceedings31st European Conference on Modeling and Simulation, ECMS, Budapest, Hungary,p.628-634.8. Satin, Ya., Korotysheva, A., Shilova, G., Sipin, A., Fokicheva, E., Kiseleva,K., Zeifman, A., Korolev, V., Shorgin, S.
Two-sided truncations for the Mt |Mt |S15queueing model. 2017. Proceedings 31st European Conference on Modeling andSimulation, ECMS, Budapest, Hungary, p. 635-641.9. Satin, Ya., Zeifman, A., Korotysheva, A., Kiseleva, K. Two-Sided Truncationsfor a Class of Continuous-Time Markov Chains. Proceedings 16th InternationalConference, ITMM 2017. Springer International Publishing AG.
2017. Pp.312323.Ïðî÷èå ïóáëèêàöèè àâòîðà ïî òåìå äèññåðòàöèè10. Êèñåëåâà, Ê.Ì. Îá îöåíêàõ ýðãîäè÷íîñòè è óñòîé÷èâîñòè äëÿ íåñòàöèîíàðíîé ìîäåëè ìàññîâîãî îáñëóæèâàíèÿ ñ ïîâòîðíûìè âûçîâàìè è îäíèì ñåðâåðîì// Ñòàòèñòè÷åñêèå ìåòîäû îöåíèâàíèÿ è ïðîâåðêè ãèïîòåç, Ïåðìü. 2016. âûï. 27. ñ. 64-68.11. Êîðîòûøåâà, À.Â., Êèñåëåâà, Ê.Ì., Ñàòèí, ß.À.
Ýðãîäè÷íîñòü è óñòîé÷èâîñòü ñèñòåìû îáñëóæèâàíèÿ ñ îäíèì ñåðâåðîì. - 2015. Çàäà÷è ñîâðåìåííîéèíôîðìàòèêè. Òðóäû Âòîðîé ìîëîäåæíîé íàó÷íîé êîíôåðåíöèè. ñ. 297-302.12. Êèñåëåâà Ê. Ì. Èññëåäîâàíèå íåêîòîðûõ íåñòàöèîíàðíûõ ìîäåëåé ìàññîâîãîîáñëóæèâàíèÿ, îïèñûâàåìûõ íåîäíîðîäíûìè ìàðêîâñêèìè öåïÿìè ñ íåïðåðûâíûì âðåìåíåì. Èíôîðìàöèîííî-òåëåêîììóíèêàöèîííûå òåõíîëîãèè è ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå âûñîêîòåõíîëîãè÷íûõ ñèñòåì: ìàòåðèàëû Âñåðîññèéñêîé êîíôåðåíöèè ñ ìåæäóíàðîäíûì ó÷àñòèåì, Ìîñêâà. 2017.
ñ. 33-34.16Êèñåëåâà Êñåíèÿ Ìèõàéëîâíà (Ðîññèÿ)Îöåíêè âåðîÿòíîñòíûõ õàðàêòåðèñòèê íåêîòîðûõ íåñòàöèîíàðíûõñèñòåì ìàññîâîãî îáñëóæèâàíèÿ äèññåðòàöèè èññëåäóþòñÿ ðàçëè÷íûå êëàññû íåñòàöèîíàðíûõ ìàðêîâñêèõ ìîäåëåé ìàññîâîãî îáñëóæèâàíèÿ, â òîì ÷èñëå ñ ãðóïïîâûì ïîñòóïëåíèåìè ãðóïïîâûì îáñëóæèâàíèåì òðåáîâàíèé è ñ ïîâòîðíûìè âûçîâàìè. Èíòåíñèâíîñòè ïîñòóïëåíèÿ è îáñëóæèâàíèÿ òðåáîâàíèé ïðåäïîëàãàþòñÿ ëîêàëüíîèíòåãðèðóåìûìè äåòåðìèíèðîâàííûìè ôóíêöèÿìè, çàâèñÿùèìè îò âðåìåíè èòåêóùåãî ñîñòîÿíèÿ ñèñòåìû. Äëÿ èçó÷åíèÿ ïðîöåññà, îïèñûâàþùåãî ÷èñëî òðåáîâàíèé â ñèñòåìå, ïðèìåíÿåòñÿ îáùèé ïîäõîä, îñíîâàííûé íà èñïîëüçîâàíèèëîãàðèôìè÷åñêîé íîðìû îïåðàòîðà ïðÿìîé ñèñòåìû Êîëìîãîðîâà è ñïåöèàëüíûõ ïðåîáðàçîâàíèÿõ ðåäóöèðîâàííîé ñèñòåìû.
Ïîëó÷åíû îöåíêè ñêîðîñòè ñõîäèìîñòè ê ïðåäåëüíûì õàðàêòåðèñòèêàì, óñòîé÷èâîñòè, ïîãðåøíîñòè àïïðîêñèìàöèè ïðîöåññàìè ñ ìåíüøåé ðàçìåðíîñòüþ. Äëÿ êàæäîé èç çàäà÷ ñ ïîìîùüþðàçðàáîòàííûõ àëãîðèòìîâ è ïðîãðàìì ñ ïðèìåíåíèåì ÷èñëåííûõ ìåòîäîâ ïîñòðîåíû ïðåäåëüíûå õàðàêòåðèñòèêè ñîîòâåòñòâóþùèõ ïðîöåññîâ. Ðàññìîòðåíûêîíêðåòíûå ñèñòåìû îáñëóæèâàíèÿ.Kiseleva Kseniia Mikhailovna (Russia)Bounds of probability characteristics for some nonstationary queueingsystemsSome classes of nonstationary queueing models are considered in this work,including model with batch arrivals and batch services and retrial queuing system.Intensities of arrivals and services are assumed to be locally integrable functionsdepend on t and on the current state of the system.
We deal with the queuelength process and employ the general approach for the study of forward Kolmogorovsystem via logarithmic norm of a operator function and related estimates. We obtainbounds on the rate of convergence, truncations and perturbations for the consideredqueue-length processes. The limiting characteristics of the corresponding processesare constructed using numerical methods, developed algorithms and programs.Specic queuing systems are studied..