Диссертация (1154649), страница 14
Текст из файла (страница 14)
Vol. 74, № 10. P. 1392–1399.Morgan P.E. et al. Serum protein oxidation and apolipoprotein CIII levels inpeople with systemic lupus erythematosus with and without nephritis // FreeRadic. Res. 2007. Vol. 41, № 12. P. 1301–1312.Morgan P.E., Sturgess A.D., Davies M.J. Evidence for chronically elevatedserum protein oxidation in systemic lupus erythematosus patients // FreeRadic. Res. 2009. Vol. 43, № 2. P. 117–127.Wayner D.D. et al. Quantitative measurement of the total, peroxyl radicaltrapping antioxidant capability of human blood plasma by controlledperoxidation. The important contribution made by plasma proteins // FEBSLett. 1985.
Vol. 187, № 1. P. 33–37.Ghiselli A. et al. A fluorescence-based method for measuring total plasmaantioxidant capability // Free Radic. Biol. Med. 1995. Vol. 18, № 1. P. 29–36.Kienhöfer D. et al. Experimental lupus is aggravated in mouse strains withimpaired induction of neutrophil extracellular traps // JCI Insight. 2017. Vol.2, № 10. P. 92920.Jorch S.K., Kubes P. An emerging role for neutrophil extracellular traps innoninfectious disease // Nat. Med. 2017.
Vol. 23, № 3. P. 279–287.Román-Pintos L.M. et al. Diabetic Polyneuropathy in Type 2 DiabetesMellitus: Inflammation, Oxidative Stress, and Mitochondrial Function // J.Diabetes Res. 2016. P. 2016: 3425617.Weaver J., Taylor-Fishwick D.A. Relationship of NADPH Oxidase-1expression to beta cell dysfunction induced by inflammatory cytokines //Biochem. Biophys. Res. Commun. 2017. Vol. 485, № 2. P. 290–294.Sanchez A., Calpena A.C., Clares B. Evaluating the Oxidative Stress inInflammation: Role of Melatonin // Int. J. Mol. Sci. 2015. Vol. 16, № 8. P.16981–17004.Ivanov A.V. et al. Oxidative Stress during HIV Infection: Mechanisms andConsequences // Oxid.
Med. Cell Longev. 2016. P. 2016: 8910396.Zhang Q. et al. Ionizing radiation promotes CCL27 secretion fromkeratinocytes through the cross talk between TNF-α and ROS // J. Biochem.Mol. Toxicol. 2017. Vol. 31, № 3. P. e21868.Ogura M.
et al. Mitochondrial reactive oxygen species suppress humoral9246.47.48.49.50.51.52.53.54.55.56.57.58.59.60.immune response through reduction of CD19 expression in B cells in mice //Eur. J. Immunol. 2017. Vol. 47, № 2. P. 406–418.Salimi A. et al. Ellagic acid, a polyphenolic compound, selectively inducesROS-mediated apoptosis in cancerous B-lymphocytes of CLL patients bydirectly targeting mitochondria // Redox Biology. 2015. Vol.
6. P. 461–471.Yu J.H., Kim H. Oxidative Stress and Cytokines in the Pathogenesis ofPancreatic Cancer // J. Cancer Prev. 2014. Vol. 19, № 2. P. 97–102.Meitzler J.L. et al. NADPH Oxidases: A Perspective on Reactive OxygenSpecies Production in Tumor Biology // Antioxidants and redox signaling.2014.
Vol. 20, № 17. P. 2873–2889.Wu Q. et al. Nrf2 mediates redox adaptation in NOX4-overexpressed nonsmall cell lung cancer cells // Exp. Cell Res. 2017. Vol. 352, № 2. P. 245–254.Hou L, C.J., Zheng Y, Wu C. Critical role of miR-155/FoxO1/ROS axis inthe regulation of non-small cell lung carcinomas // Tumour Biol. 2016. Vol.37, № 4. P.
5185–5192.Sies H., Berndt C., Jones D.P. Oxidative Stress // Annu. Rev. Biochem.2017. Vol. 86. P. 715–748.Lozhkin A. et al. NADPH oxidase 4 regulates vascular inflammation inaging and atherosclerosis // J. Mol. Cell. Cardiol. 2017. Vol. 102.
P. 10–21.Steen K.A., Xu H., Bernlohr D.A. FABP4/aP2 Regulates MacrophageRedox Signaling and Inflammasome Activation via Control of UCP2 // Mol.Cell. Biol. 2017. Vol. 37, № 2. P. e00282–16.Jin Y. et al. Involvement of EGF receptor signaling and NLRP12inflammasome in fine particulate matter-induced lung inflammation in mice// Environ. Toxicol. 2017. Vol. 32, № 4. P. 1121–1134.González-Chávez A.
et al. Pathophysiological implications between chronicinflammation and the development of diabetes and obesity // Cirugia ycirujanos. 2011. Vol. 79, № 2. P. 209–216.Wang M. et al. Astilbin improves potassium oxonate-induced hyperuricemiaand kidney injury through regulating oxidative stress and inflammationresponse in mice // Biomed. Pharmacother.
2016. Vol. 83. P. 975–988.Son J. et al. Surveying the damage: the challenges of developing nucleicacid biomarkers of inflammation // Mol. Biosyst. 2008. Vol. 4, № 9. P. 902–908.Keshari R.S. et al. Neutrophil extracellular traps contain mitochondrial aswell as nuclear DNA and exhibit inflammatory potential // Cytometry. PartA. 2012. Vol. 81, № 3. P. 238–247.Pan L. Oxidized Guanine Base Lesions Function in 8-Oxoguanine DNAGlycosylase-1-mediated Epigenetic Regulation of Nuclear Factor κB-drivenGene Expression // J. Biol.
Chem. 2016. Vol. 291, № 49. P. 25553–25566.Aguilera-Aguirre L. Innate inflammation induced by the 8-oxoguanine DNAglycosylase-1-KRAS-NF-κB pathway // J. Immunol. 2014. Vol. 193, № 9.P. 4643–4653.9361.62.63.64.65.66.67.68.69.70.71.72.73.74.Kummarapurugu A.B. NADPH: quinone oxidoreductase 1 regulates hostsusceptibility to ozone via isoprostane generation // J.
Biol. Chem. 2013.Vol. 288, № 7. P. 4681–4691.Scholz H. 8-isoprostane increases expression of interleukin-8 in humanmacrophages through activation of mitogen-activated protein kinases //Cardiovasc. Res. 2003. Vol. 59, № 4. P. 945–954.Jarukitsopa S. Epidemiology of Systemic Lupus Erythematosus andCutaneous Lupus Erythematosus in a Predominantly White Population in theUnited States // Arthritis Care Res. 2015. Vol.
67, № 6. P. 817–828.Danchenko N., Satia J.A., Anthony M.S. Epidemiology of systemic lupuserythematosus: a comparison of worldwide disease burden // Lupus. 2006.Vol. 15, № 5. P. 308–318.Healy E., Kieran E., Rogers S. Cutaneous lupus erythematosus--a study ofclinical and laboratory prognostic factors in 65 patients // Ir. J.
Med. Sci.1995. Vol. 164, № 2. P. 113–115.Oinuma K. et al. Osteonecrosis in patients with systemic lupuserythematosus develops very early after starting high dose corticosteroidtreatment // Ann. Rheum. Dis. 2001. Vol. 60, № 12. P. 1145–1148.Petri M. et al. Depression and cognitive impairment in newly diagnosedsystemic lupus erythematosus // J. Rheumatol.
2010. Vol. 37, № 10. P.2032–2038.Bertsias G.K. et al. EULAR recommendations for the management ofsystemic lupus erythematosus with neuropsychiatric manifestations: reportof a task force of the EULAR standing committee for clinical affairs // Ann.Rheum. Dis. 2010.
Vol. 69, № 12. P. 2074–2082.Livingston B., Bonner A., Pope J. Differences in clinical manifestationsbetween childhood-onset lupus and adult-onset lupus: a meta-analysis //Lupus. 2011. Vol. 20, № 13. P. 1345–1355.Nodler J. et al. Elevated antiphospholipid antibody titers and adversepregnancy outcomes: analysis of a population-based hospital dataset // BMCPregnancy Childbirth. 2009. Vol. 9, № 11.Sanchez E. et al. Phenotypic associations of genetic susceptibility loci insystemic lupus erythematosus // Ann. Rheum. Dis. 2011. Vol. 70, № 10.
P.1752–1752.Järvinen T.M. et al. Replication of GWAS-identified systemic lupuserythematosus susceptibility genes affirms B-cell receptor pathwaysignalling and strengthens the role of IRF5 in disease susceptibility in aNorthern European population. Rheumatology (Oxford). 2012. Vol. 51, №1. P. 87–92.Fredi M. et al.
Typing TREX1 gene in patients with systemic lupuserythematosus // Reumatismo. 2015. Vol. 67, № 1. P. 1–7.Ellyard J.I. et al. Identification of a pathogenic variant in TREX1 in earlyonset cerebral systemic lupus erythematosus by Whole-exome sequencing //Arthritis Rheumatol. 2014. Vol. 66, № 12. P. 3382–3386.9475.76.77.78.79.80.81.82.83.84.85.86.87.88.89.Ghodke-Puranik Y., Niewold T.B. Immunogenetics of systemic lupuserythematosus: A comprehensive review // J. Autoimmun. 2015. Vol. 64.
P.125–136.Demirci F.Y. et al. Identification of a New Susceptibility Locus for SystemicLupus Erythematosus on Chromosome 12 in Individuals of EuropeanAncestry // Arthritis Rheumatol. 2016. Vol. 68, № 1. P. 174–183.Mavragani C.P. et al. Expression of Long Interspersed Nuclear Element 1Retroelements and Induction of Type I Interferon in Patients With SystemicAutoimmune Disease // Arthritis Rheumatol. 2016.
Vol. 68, № 11. P. 2686–2696.Kalunian K.C. Interferon-targeted therapy in systemic lupus erythematosus:Is this an alternative to targeting B and T cells? // Lupus. 2016. Vol. 25, №10. P. 1097–1101.Scott E. et al. Immune cells and type 1 IFN in urine of SLE patientscorrelate with immunopathology in the kidney // Clin.
Immunol. 2016. Vol.168. P. 16–24.Munroe M.E. et al. Altered type II interferon precedes autoantibody accrualand elevated type I interferon activity prior to systemic lupus erythematosusclassification // Ann. Rheum. Dis. 2016. Vol. 75, № 11. P. 2014–2021.Lahita R.G. The immunoendocrinology of systemic lupus erythematosus //Clin. Immunol. 2016. Vol. 172, P. 98–100.Mackern-Oberti J.P. et al. Hormonal Modulation of Dendritic CellsDifferentiation, Maturation and Function: Implications for the Initiation andProgress of Systemic Autoimmunity // Arch. Immunol.
Ther. Exp. 2017.Vol. 65, № 2. P. 123–136.Draborg A., Izarzugaza J.M., Houen G. How compelling are the data forEpstein-Barr virus being a trigger for systemic lupus and other autoimmunediseases? // Curr. Opin. Rheumatol. 2016. Vol. 28, № 4. P. 398–404.Draborg A.H. et al. Impaired Cytokine Responses to Epstein-Barr VirusAntigens in Systemic Lupus Erythematosus Patients // J. Immunol. Res.2016.