Главная » Просмотр файлов » Скляр Б. Цифровая связь (2003)

Скляр Б. Цифровая связь (2003) (1151859), страница 202

Файл №1151859 Скляр Б. Цифровая связь (2003) (Скляр Б. Цифровая связь (2003)) 202 страницаСкляр Б. Цифровая связь (2003) (1151859) страница 2022019-07-07СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 202)

Блочная доазрамма: преобразующее кодирование 1. К входному вектору применяется обратимое преобразование. 2. Коэффициенты преобразования квантуются. 3. Квантованные коэффициенты передаются и получаются. 4. Преобразование обращается с использованием квантованных коэффициентов. Отметим, что при преобразовании не выполняется никакого кодирования источника; просто допускается более удобное описание вектора сигнала, которое позволяет легче где В(Х) — это весовая матрица, а Хг — транспонированный вектор Х.

Минимизация может быть вычислительно проще, если весовая матрица является диагональной. Диагональная весовая матрица дает координатное множество с нарушенной связью (некоррелированное), так что ошибка минимизации вследствие квантования может находиться независимо по каждой координате. Таким образом, преобразующее кодирование включает следующую последовательность операций, которые изображены на рис. 13.32. использонать кодирование источника.

Задача преобразования состоит в отображении коррелированной входной последовательности в другую систему координат, в которой координаты имеют меньшую корреляцию. Напомним, что это в точности представляет собой задачу, выполняемую кодером с предсказанием. Кодирование источника происходит посредством присвоения битового значения различным коэффициентам преобразования. Как часть этого присвоения, коэффициенты могут быть разделены на подмножества, которые кнантуются с помощью различного числа бит, но не с помощью различных размеров шага квантования. Зто присвоение отражает динамическую область (дисперсию) каждого коэффициента и может быть взвешено мерой, отражающей важность (относительно человеческого восприятия) элемента, переносимого каждым коэффициентом [17].

Например, подмножество коэффициентов может быть сведено к нулевой амплитуде или может быть квантовано с помощью 1 или 2 бит. Преобразонание может быть независимым от вектора данных. Примерами таких преобразований являются дискретное преобразование Фурье (с)!зсгесе Роипег сгапз(оггп— 1)РТ, ДПФ), дискретное преобраювание Уолша-Адамара (с(!зсгесе Жа]з!с-Нас)атас сгапзГопп — Г)%НТ), дискретное косинус-преобразование (с(1зсгесе сояпе сгапзГоггп — ПСТ, ДКП) и дискретное наклонное преобразование (с)1зсгесе з1аш сгапзГопп — 0БТ). Преобразование может быть также получено из вектора данных, как это делается в дискретном преобразовании Карунена-Лоэва (г(1зсгесе Каг1шпеп-1.оече сгапзГопп — 1)КГТ), иногда называемом лреобраэовакием основного камлокента (рппс!ра! сотропепс сгапзГопп — РСТ) [18].

Независимые от данных преобразования являются самыми простыми в реализации, но они не так хороши, как информационно-зависимые. Зачастую вычислительная простота является достаточным оправданием лля использования независящих от данных преобразований. При хорошем субоптимальном преобразонании потери эффективности кодирования незначительны (как правило, меньше 2 дБ), и обычно при демонстрации рабочих характеристик упоминается ухудшение качества. 13.6.1. Квантование дпя преобразующего кодирования Преобразующие кодеры обычно называются спектральными, поскольку сигнал описывается через свое спектральное разложение (в выбранном базисном множестве). Спектральные члены вычисляются для неперекрывающихся последовательных блоков входных данных.

Таким образом, выход преобразующего колера может рассматриваться как множество временных рядов, один ряд для каждого спектрального члена. Дисперсия каждого ряда может быть определена, и каждый ряд может быть квантован с использованием разного числа бит. Допуская независимое квантование каждого коэффициента преобразования, имеем возможность распределения фиксированного числа бит среди коэффициентов преобразования для получения минимальной ошибки квантования. 13.б.2. Многополосное кодирование Преобразующие кодеры в разделе!З.б были описаны как выполняющие деление входного сигнала на множество медленно изменяющихся временных рядов, кажлый из которых связан с определенным базисным вектором преобразования.

Спектральные члены (скалярные произведения данных с базисными векторами) вычисляются с помощью множества скалярных произведений. Множество скалярных произвелений может быть вычислено с помощью множества фильтров с конечной импульсной хараклсерислсикой [19].

С этой целью преобразующий кодер может рассматриваться как выполняющий разделение полосы частот входных данных на отдельные каналы. Обоб- щая, получим, что многополосный кодер, который выполняет спектральное рапгеление полосы частот на отдельные каналы с помощью набора непрерывных узкополосных фильтров, может рассматриваться в качестве частного случая преобразующего кодера. (Типичный многополосный кодер изображен на рис. 13.33.) Переключение Выборка Т Фильтр М Устройство квантованияМ чм'.т Фильтр 1 Спектральные характеристики фильтров Фильтр 2 и 12 13 ц тб Рис.

13.33. 1иногололосное кодирование Спектральное разложение данных (как и фильтрование) допускает различное формирование класса специальных базисных множеств (т.е. спектральных фильтров), в частности базисных множеств, которые отражают приемлемые предпочтения пользователя и модели источника. Например, шум квантования, сгенерированный в полосе частот с большой дисперсией, будет ограничен этой полосой частот; он не будет проникать в соседнюю полосу частот, имеющую низкую дисперсию и, следовательно, уязвимую для низкоуровневых сигналов, которые замаскированы шумом. Имеем также выбор формирующих фильтров с равными или неравными полосами частот (рис.

13.33). Таким образом, можно независимо кажаой подполосе приписать выборочную частоту, соответствующую ее ширине полосы частот, и число бит квантования, соответствующее ее дисперсии. Для сравнения, в общепринятом преобразующем кодировании амплитуда каждого базисного вектора выбирается с одинаковой частотой. Многополосный кодер может быть создан как трансмультиплексор (преобразователь вида уплотнения). Здесь входной сигнал рассматривается в виде составленного из множества базисных функций, моделированных как независимые подканалы узкой полосы частот. Кодер разделяет входной сигнал на множество каналов с низкой скоростью лерелачи данных, уплотненных с временным разделением (бтпе-т)!у!з!оп шц1!!р!ех!пав Т)3М).

После квантования и передачи декодер обращает процесс фильтрации и повторной выборки, преобразуя каналы ТОМ обратно в исходный сигнал. При классическом полхоле к этому процессу можно использовать множеспю узкополосных фильтров с этапами смешивания, фильтрации нижних частот и дискретизации на пониженной частоте (часто называемой деиимацией, или прореживанием). Эта операция фильтрации со- кращает входную полосу частот до выбранной полосы частот канала и повторно выбирает сигнал до самой низкой частоты, что позволяет избежать наложения разделенных полос частот данных. В приемнике производится обратный процесс. Разделенные на полосы данные для увеличения их частоты до желаемой частоты дискретизации проходят через интерполируюшие фильтры и смешиваются обратно до их соответствующего спектрального положения.

Чтобы создать исходный смешанный сигнал, они объединяются. Для кодирования речи или, в более общем смысле, для сигналов, которые связаны с механическим резонансом, желательны группы фильтров с неравными центральными частотами и неравными полосами частот. Такие фильтры называются пропорциональными наборами фильтров. Эти фильтры имеют логарифмически расположенные центральные частоты и полосы частот, пропорциональные центральным частотам. При рассмотрении на логарифмической шкале такое пропорциональное размещение выглядит как равномерное расположение полос частот и отражает спектральные свойства многих физических акустических источников.

13.7. Кодирование источника для цифровых данных Кодирование с целью сокращения избыточности источника данных обычно влечет за собой выбор эффективного двоичного представления этого источника. Часто это требует замены двоичного представления символов источника альтернативным представлением. Замена обычно является временной и производится, для того чтобы достичь экономии при запоминании или передаче символов дискретного источника.

Двоичный код, присвоенный каждому символу источника, должен удовлетворять определенным ограничениям, чтобы позволить обращение замены. К тому же код может быть далее ограничен спецификацией системы, например ограничениями памяти и простотой реализации. Мы настолько привыкли к использованию двоичных кодов для представления символов источника, что можем забыть о том, что это всего лишь один из вариантов присвоения. Наиболее общим примером этой процедуры является двоичное присвоение количественным числительным (даже не будем рассматривать отрицательные числа). Можно прямо переводить в двоичную систему счисления, двоичные коды восьмеричных чисел, двоичные коды десятичных чисел, двоичные коды шестнадцатеричных чисел, десятичные коды "два из пяти", десятичные коды с избытком три и т.д.

В этом примере при выборе соответствия учитывается простота вычисления, определения ошибки, простота представления или удобство кодирования. Для определенной задачи сжатия данных основной целью является сокращение каличесглва бит. Конечные дискретные источники характеризуются множеством различных символов, Х(л), где и = 1, 2, ..., Ф вЂ” алфавигл источника, а и — индекс данных. Полное описание требует вероятности каждого символа и совместных вероятностей символов, выбранных по два, три и т.д.

Характеристики

Тип файла
DJVU-файл
Размер
15,11 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6455
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее