Главная » Просмотр файлов » Трухачев А.А. Радиолокационные сигналы и их применения (2005)

Трухачев А.А. Радиолокационные сигналы и их применения (2005) (1151792), страница 41

Файл №1151792 Трухачев А.А. Радиолокационные сигналы и их применения (2005) (Трухачев А.А. Радиолокационные сигналы и их применения (2005)) 41 страницаТрухачев А.А. Радиолокационные сигналы и их применения (2005) (1151792) страница 412019-07-06СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 41)

Пусть е„р — угломестное направление передающего луча (центр главного лепестка неискаженной диаграммы), 17(в — в„,р) — диаграмма направленности (по амплитуде) без учета влйяния Земли. Прямая волна около цели: Е,„= 6(вр — е„р) сов(ом), отраженная: Е, = р О(е, — е„„р).соз(ор — Арр), где ер и е, — углы места, под которыми видны цель и точка отражения, р — коэффициент отражения. Уравнение для угла е„получаем из теоремы косинусов (Я, + Ь,,) = (Я, + Ь )'+ Яг — 2Е(Я, + Ь,)соз(е„+ к/2).

Затем получаем в, = е„— б, где б — решение уравнения 1г =1г +Ег -21 Ясозб. Суммарную волну приводим к виду Е„р Е, = д„„соз(огг 4 д). Фаза <р нас не интересует, а мощность суммарной волны определяется фор- мулой д„„=[0(а„— в„„) ррах(в, — е„„,)соз(Лу)) + р П (в, — е„„)яп (Ляг). 2 11. = 11пер'т1пр' 2 2 2 2 Чпер Ьпер1О (ец епер) т1пр Ып~ 1Сг (ея епр). (Я„+ Ь„)г =-(Е„+ Ьр) + Е' — 2Е(Р„+ Ь )соз(вч к/2). 212 Обратим внимание на то, что в„не является истинным углом места цели.

Этот угол, наверное, следует назвать кажущимся углом места, так как из-за рефракции луч оказывается искривленным. Истинный угол места цели в для текущей точки траектории находится из уравнения Величина д„', представляет собой коэффициент усиления передающей антенны (по мощности) в направлении на цель (с учетом влияния Земли). Если вместо в„„р в найденную формулу подставить соответствующее угловое направление для приемной антенны г.,р, то получим коэффициент усиления приемной антенны в направлении на цель я,'в .

Выражение д,'„~ д,' представляет собой двустороннюю диаграмму направленности по мощности. Если в качестве самопроверки в приведенное выражение подставить нулевое значение коэффициента отражения (р = О), то получим д„„р = (3(ер — в„„р). А при р » 1 получаем я„р — — рО(в, — в„), Можно отдельно вычислить поправочный коэффициент г),'„обусловленный интерференцией. Поправочный коэффициент определяется формулами В последнем уравнении в качестве радиуса Земли используется ,иретинный радиус я„, а в предыдущих уравнениях использовался кагкушиися радиус Земли й,. ' На рис. 7.24, 7.25 и 7.26 представлены примеры расчета диаграммы направленности антенны.

На рис.7.27 представлен поправочный коэффициент г)„. Для 6() использовалась аппроксимация 46(е ) = (япх)/х, где х = Ьв1(Л,12); Ь = 1,392; Л, — ширина диаграммы направленности по уровню половинной мощности; Л,. = 1,0'. Для рис. 7.24, 7.26 и 7.27 полагалось, что луч направлен под углом ",,~М~'*;„'."' пместа спер = впр = 0,5'А~ :;".

$,;':," На рисунках даны зависимости коэффициента я, рассчитанного по :,-'.:приведенным выше формулам для д„„. Высота фазового центра ан- ;1,-=;..;;.:,'тонны принималась равной 5,5 м. Полагалось Х = 0,03 м. Расчеты вы'-;~ '..:,:,.'-;:: поднялись для Ь„= 25м и 100м; максимальные дальности прямой ',::;=;-.-,';.;„"-': видимости цели при этом равны соответственно 3 0,3 км и 50,9 км 101яя г 101ад г 1О 1 о 2 -10 — го 5 3 :,.,Ек,,' -12 -зо — 4 — 40 е, мин — 50 Л, км О го 40 60 10 15 го 25 30 Рис. 7.24. Форма луча при Рис. 725. Кромка диаграммы при единичном (сплошная кривая) и малых углах места; Л,.

= 25 м. ;.";. '-„,-'~:;-' нУлевом (пУнктиР) коэффициентах Положения луча: 1 — 0,4 ширины отражения; Ь„= 25 м диаграммы нал горюонтом; 2 — 0,5 ширины; 3 — 0,75 ширины, 4 — 0,9 ширины; 5 — 1,0 ширины 101ця г 101дд г 6,, ~,1 6 -ь О 0 ! — б — 12 †!8 '+- .' — 1 — 4 —, -24 ~ ~ ' ж мин — г4 Л, км -б — г г б 1О го 30 40 50 Рис. 7.26. Нижний интерференционный лепесток при Ь„= 25 м (сплошвые кривые) и Ь„= 100 м (пунктир) 101я Ш, б1 — 12 — 18 — 24 Р, км О 1О 20 30 4О 50 Рис.

7.27. Односторонний поправочный коэффициен~ при /г, .—.. 25 м (сплошные кривые) и /г„= 1ОО м (пунктир) Пунктирная кривая на рис. 7.24 отображает исходную форму диаграммы направленности, не искаженную в результате интерференции сигналов.

По кривым рис. 7.25 можно ориентировочно оценить влияние угла места луча на уровень сигнала. Обращаем внимание, что на всех рисунках, в том числе и на рис.7.27, представлена односторонняя диаграмма, то есть либо .олька на передачу, либо только на прием. Анализ дополнительных результатов, полученных в процессе подготовки представленных рисунков, позволил сдела~ь некоторые выводы, которые могут оказаться полезными в расчетах с учетом интерференции. Интерференционные лепестки, расположенные в нижней половине луча, формируются главным лепестком диаграммы направленности: прямая волна и отраженная волна принимаются главным лепестком. Затем, по мере приближения цели растет угол между направлениями прихода интерферирующих сигналов. При этом прямая волна будет восприниматься верхней половиной главного лепестка, а отраженная волна попадает на боковой лепесток диаграммы, находящийся около нижней половины главного лепестка.

Уровень боковых лепестков и их расположение иногда бывают известными в приближенном виде. Не исключено, что после уточнения лепестковой структуры антенной диаграммы может измениться вид и расположение интерференционных пульсаций в верхней части луча. В таких случаях напрашивается вывод о нецелесообразности учета интерференции сигналов, если отраженная волна принимается боковыми лепестками диаграммы направленности антенны. Если антенные боковые лепестки включаются в расчеты, то необходимо учесть следующее обстоятельство. Когда направление визирования цели переходит из одного антенного лепестка в другой, то в момент перехода будет происходить дополнительный доворот фазы на 180'.

Отсюда следует, например, что было бы ошибкой вместо аппроксимации диаграммы зависимостью з(п(х)/х использовать / гйп(х) /х',. Теперь оценим влияние интерференции на дальность действия радиолокатора. Среднее значение отношения сигнал/шум находим по формуле г Р р 8верЫпр где П вЂ” потенциал радиолокатора; т1 — коэффициент словленный различными факторами, проявляющимися 'женин целей;а — среднее значение отражакнцей повер ' Вероятность обнаружения сигнала, флуктуирующего по ;:"'р;;,:;;-,-!: ' закону, определяется формулой . ~ф;::Ё . 23 = ехр —— где Х = 1п(1 г"), г — вероятность ложной тревоги. Дальн !'~:,~!:;":; Яр, при которой вероятность обнаружения равна 1/2, буд ;-'э$:-;:" дальностью обнаружения низколетящей цели илн дальн вня радиолокатора при малых углах места.

На рис. 7.28 представлены зависимости дальности обн отражающей поверхности цели. В расчетах здесь и дал ::-:,;:; —. лось Пт1=3 10~~м~; Г= 10 ~; е.,р=е„р---0,5Лр Значен ,"л~'-'; -'г параметров приведены выше. ф.'- г '*4 ":-~!"г, 25 потерь, обупри обнарухности цели. рзлеев скому ость до цели ем называть остью дейст- аружения от ее принимаия остальных йо км 45 44 $~ф' 41 2 а,м 40 О ! а,м 1 2 3 4 2 3 4 Рис. 7.28.

Зависимости дальности обнаружения цели от ее отражающей поверхности В литературе иногда показывается, что дальность действия ра';.,:;, у,,:, . диолокатора при малых углах места пропорциональна корню восьмой степени из отражающей поверхность цели. Подобное утвержде- :)~~4!.'' ние справедливо в предположении, что поверхность Земли плоская $- Исгюльзуя методику расчета дальности обнаружения низколетящей цели, разработанную в предположении круглой поверхности Земли, можно попытаться найти "степень корня" для новых условий. С этой целью далее определялась степень корня Аг в следующем выражении: 214 215 где а' =- 2о, а Р.

и Л„' — дальности обнаружения цели при отражающих поверхностях а и о' соответственно. На рис. 7.29 приводится зависимость степени корня от отражающей поверхности при различных высотах полета цели. // б0 Рис. 7.29. Степень корня Ф: / — Ь„=. 100 м; 2 — 6„= 50м; 3 — Ь„=25м 40 30 20 10 о,м 2 Р 1 2 3 4 Зависимость дальности обнаружения от отражающей поверхности для случая низколетящей цели очень слабая. Так, например, если Л„= 25 м, то при увеличении отражающей поверхности цели с 1 м до 2 м дальность обнаружения увеличится примерно в 1,019 раз, то есть всего на 1,9%. А при Ь,„= 100 м дальность обнаружения увеличится в 1,015 раз, или на 1,5%. Зависимость дальности обнаружения от потенциала радиолокатора аналогична зависимости от отражающей поверхности цели.

Поэтому можно утверждать, что дальность обнаружения также слабо зависит и от потенциала. При Ь„= 25 м и о = 1 ма увеличение потенциала радиолокатора на 3дБ приводит к увеличению дальности обнаружения на те же 1,9 О%. Отметим, чзо при обнаружении цели в свободном пространстве увеличение потенциала на 3 дБ ведет к увеличению дальности обнаружения в '/2 раз, то есть иа 19%. Если бы действовал закон корня восьмой степени, то дальность обнаружения увеличилась бы на 9% В приведенных выше соотношениях можно формально увеличить радиус Земли (например, в 1000 раз) и задать всенаправленную антенную диаграмму. Если при этом еще задать высоту цели такой, чтобы цель наблюдалась нижней кромкой нижнего интерференционного лепестка, то в приближенном виде будет выполняться закон корня восьмой степени.

Заметим, что полученные в данном параграфе результаты относятся к любым сигналам, как к импульсным, так и к квазинепрерывным. В сверхкорогкоимпульсной радиолокации длительность импульса может составлять всего десять длин волн 1271. А при наблюдении 216 ::,;цели нижним интерференционным лепестком разность расстояний, ": проходимых прямым сигналом и отраженным от Земли сигналом, сравнима с половиной длины волны. Поэтому, несмотря на такую :::малую длительность импульса, не следует рассчитывать, что прямой и отраженный сигналы будут в приемном устройстве разрешаться по задержке. 7.9.

Отражении от местных предметов При работе импульсными сигналами местные предметы, находя.'",'щиеся в пределах прямой видимости, попадают в интервал бланки: ' руемых дальностей. Поэтому мешающее воздействие местных пред':, метов проявляется только при работе КН сигналами. Отношение помеха/шум для местного предмета определяем по формуле д = П.о/Я 4, где П вЂ” потенциал радиолокатора для КН сиг;;;-:...:-:":" нала, о — отражающая поверхность местного предмета, Р— даль- ,,.!:,-'ность до местного предмета.

Характеристики

Тип файла
DJVU-файл
Размер
7,15 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6392
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее