Диссертация (1150745), страница 14
Текст из файла (страница 14)
— Pp. 2207–2212.72. Nonlinear model predictive control: towards new challenging applications /ed. by L. Magni, D. M. Raimondo, F. Allgöwer. — Berlin: Springer, 2009. —576 pp.73. Output feedback model predictive control: a probabilistic approach / M.Farina [et al.] // Proceedings of 19th IFAC World Congress. Vol. 47. —2014. — Pp. 7461–7466.10774. Palmor Z. Stability properties of Smith dead-time compensator controller //Int. J. Control.
— 1980. — Vol. 32, no. 6. — Pp. 937–949.75. Pannocchia G., Rawlings J. B., Wright S. J. Conditions under which suboptimal nonlinear MPC is inherently robust // Systems & Control Letters. —2011. — Vol. 60. — Pp. 747–755.76. Ponomarev A. Nonlinear predictor feedback for input-affine systems withdistributed input delays // IEEE Transactions on Automatic Control. —2016.
— Vol. 61, no. 9. — Pp. 2591–2596.77. Ponomarev A. Performance testing of an approximate model predictive control algorithm // Proceedings of 2014 International Conference on ComputerTechnologies in Physical and Engineering Applications (ICCTPEA) / ed. byE. I. Veremey. — Saint Petersburg, 2014. — P. 140.78. Ponomarev A. Reduction-based robustness analysis of linear predictor feedback for distributed input delays // IEEE Transactions on Automatic Control.
— 2016. — Vol. 61, no. 2. — Pp. 468–472.79. Qin S. J., Badgwell T. A. A survey of industrial model predictive controltechnology // Control Engineering Practice. — 2003. — Vol. 11, no. 7. —Pp. 733–764.80. Reble M., Allgöwer F. Unconstrained model predictive control and suboptimality estimates for nonlinear continuous-time systems // Automatica. —2012. — Vol. 48, no. 8. — Pp. 1812–1817.81. Richalet J. Industrial applications of model based predictive control // Automatica. — 1993.
— Vol. 29. — Pp. 1251–1274.82. Rossiter J. A. Model-based predictive control: a practical approach. — CRCpress, 2013. — 318 pp.10883. Rubagotti M. Stabilizing Linear Model Predictive Control Under InexactNumerical Optimization // IEEE Transactions on Automatic Control. —2014. — Vol. 59, no. 6. — Pp.
1660–1666.84. Scokaert P. O. M., Mayne D. Q., Rawlings J. B. Suboptimal model predictive control (feasibility implies stability) // IEEE Transactions on AutomaticControl. — 1999. — Vol. 44, no. 3. — Pp. 648–654.85. Smith O. J. M. A controller to overcome dead time // ISA Journal.
—1959. — Vol. 6, no. 2. — Pp. 28–33.86. Smith O. J. M. Closer control of loops with dead time // Chemical Engineering Progress. — 1957. — Vol. 53, no. 5. — Pp. 217–219.87. Sotnikova M. Plasma stabilization based on model predictive control // International journal of modern physics A. — 2009. — Vol. 24, no. 5. —Pp. 999–1008.88. Sotnikova M. Ship dynamics control using predictive models // Proceedingsof the 9th IFAC Conference on Manoeuvring and Control of Marine Craft(MCMC 2012). — 2012. — Pp. 250–255.89. Stabilization of Nonlinear System with Input Delay and Biased SinusoidalDisturbance / A. Pyrkin [et al.] // IFAC Proceedings Volumes (IFAC-PapersOnline). Vol.
19. — 2014. — Pp. 12104–12109.90. Tøndel P., Johansen T. A., Bemporad A. An algorithm for multi-parametricquadratic programming and explicit MPC solutions // Automatica.—2003. — Vol. 39, no. 3. — Pp. 489–497.91. Ultra-fast stabilizing model predictive control via canonical piecewise affineapproximations / A.
Bemporad [et al.] // IEEE Transactions on AutomaticControl. — 2011. — Vol. 56, no. 12. — Pp. 2883–2897.10992. Veremey E., Sotnikova M. Plasma Stabilization System Design on the Baseof Model Predictive Control // Model Predictive Control / ed. by T. Zheng. —Sciyo, 2010. — Pp. 199–222.93. Wang Y., Boyd S. Fast Model Predictive Control Using Online Optimization // IEEE Transactions on Control Systems Technology. — 2010. —Vol.
18, no. 2. — Pp. 267–278..