Диссертация (1150634), страница 14
Текст из файла (страница 14)
surface-enhanced Raman scattering) – поверхностно-усиленноекомбинационное рассеяниеSESAM (от англ. Semiconductor saturable absorber mirrors) — полупроводниковыезеркала с насыщающимся поглотителемМГ — приближение Максвелла ГарнеттаМШГ — мода шепчушей галереиНЧ — наночастицаРБО — распределенных Брэгговских отражателейРИТ — реактивного ионного травленияУКР — усиление комбинационного рассеянияСМН— стекло-металлический нанокомпозитЭЛЛ — электронно-лучевая литографияЭП — экситон поляритоныУКР — Усиленное комбинационное рассеяние106Список литературы1. McMahon, M.
D. Second-harmonic generation from arrays of symmetric goldnanoparticles / M. D. McMahon, R. Lopez, R. F. Haglund, Jr., E. A. Ray, andP. H. Bunton // Phys. Rev. B — 2006 —V. 73 — P. 041401.2. Seifert, G. Laser-Induced, Polarization Dependent Shape Transformation ofAu/Ag Nanoparticles in Glass / G. Seifert, G. A. Stalmashonak, H. Hofmeister,J. Haug, M.
Dubiel, // Nanoscale Res Lett.—2009. —V. 4. —№. 11. — P. 1380–1383.3. Maier, S. A. Plasmonics: Fundamentals and Applications / S. A. Maier.—New York : Springer, 2007.— 224 p.4. Novotny, L. and B. Hecht. Principles of Nano-Optics / Cambridge UniversityPress. New York. 2006.— 578 p.5. Климов, В. Наноплазмоника / В. Климов. — Москва: Физматлит, 2009.—481 с.6. Kreibig, U. Optical Properties of Metal Clusters. Springer Series in MaterialsScience Vol.
25 / U. Kreibig and M.Vollmer — Berlin: Springer, 1995 — 532p.7. Tuovinen, H. et al. Linear and second-order nonlinear optical properties ofarrays of noncentrosymmetric gold nanoparticles // J. Nonlin. Opt. Phys. Mater.– 2002. —V. 11. – P. 421–4328. Canfieldet, B. K. et al. Linear and nonlinear optical responses influenced bybroken symmetry in an array of gold nanoparticles // Opt. Express.
– 2004. – V.12. — P. 5418–5423.9. Campion, A. Surface-enhanced Raman scattering / A. Campion and P.Kambhampati // Chemical Society Reviews. – 1998. – V. 27. – P. 241–25010. Otto, A. Surface enhanced Raman scattering / A. Otto, I. Mrozek, H. Grabhornand W. Akemann // Journal of Physics: Condensed Matter. — 1992. – V. 4. –P. 1143 .11. Stiles, P. L. Surface-Enhanced Raman Spectroscopy / P. L. Stiles, J.
A.Dieringer, N. C. Shah, and R. P. Van Duyne // Annual Review of AnalyticalChemistry. — 2008 – V. 1. – P. 601–62612. Zhurikhina, V.V. Formation of metal island films for SERS by reactivediffusion / V.V. Zhurikhina, P.N. Brunkov, V.G. Melehin, T. Kaplas, Y. Svirko,V.V. Rutckaia and A.A. Lipovskii // Nanoscale Res. Lett. – 2012. – V. 7. — №.676.13. Flytzanis, C. Nonlinear optics in composite materials / C. Flytzanis, F. Hache,M.
C. Klein, D. Ricard, and P. Roussignol // Prog. Opt. — 1991.—V. 29. — P.321–411.14. Kauranen, M. and A. V. Zayats, Nonlinear plasmonics, // Nature Photonics. –2012. — V. 6. — P. 737–748.10715. Flytzanis, С. Nonlinear optics in mesoscopic composite materials // J. Phys. B.— 2005. — V. 38.—№. 9—P. 661-679.16. Khurgin, J. B.
and G. Sun, Plasmonic enhancement of the third order nonlinearoptical phenomena: Figures of merit // Optics Express. — 2013. —V. 21. —№.22. — P. 27460-2748017. Anceau, C. Local second-harmonic generation enhancement on goldnanostructures probed by two-photon microscopy / C. Anceau, S. Brasselet, J.Zyss, and P. Gadenne // Optics Letters.— 2012 – V .28. — P. 713–715.18. Wokaun, A. et al. Surface second-harmonic generation from metal island filmsand microlithographic structures // Phys.
Rev. B. — 1981 — V. 24. — P. 849–856.19. Linden, S. et al. Collective effects in second-harmonic generation from splitring-resonator arrays // Phys. Rev. Lett. — 2012. – V. 109. — P. 015502.20. McMahon, M. D. Second-harmonic generation from arrays of symmetric goldnanoparticles / M.D. McMahon, R. Lopez, R. F. Haglund Jr, E. A. Ray and P.H. Bunton // Phys. Rev. B. –2006 .– V.
73. P. 04140121. Scherbak, S. A. Electric Properties of Hemispherical Metal Nanoparticles:Influence of the Dielectric Cover and Substrate / S. A. Scherbak, O. V.Shustova, V. V. Zhurikhina, A. A. Lipovskii // Plasmonics — 2014.—V. 10. —№. 3. — P. 519-527.22. Kettunen, H. Polarizability of a dielectric hemisphere / H. Kettunen, Wallén andA. Sihvola // J. Appl.
Phys. — 2007. — V. 102. — P. 04410523. Kettunen, H. Electrostatic resonances of a negative-permittivity hemisphere /H. Kettunen, H. Wallén and A. Sihvola // J. Appl. Phys. — 2008. — V. 103.—P. 094112.24. McCall, S. L. Whispering gallery mode mirodisk lasers / S. L. McCall, A. F. J.Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, // Applied Physics Letters—1992.— V.
60.—P. 289-291.25. Matsumoto, N. and K. Kumabe. AlGaAs-GaAs Semiconductor Ring Laser //Jpn. J. Appl. Phys. — 1977.—V. 16. — P. 1395-1398.26. Liao A.S.H. and S. Wang. Semiconductor injection lasers with a circularresonators // Applied physics Letters—1980. — V. 36.—P. 801.27. Ledentsov N.N., Ustinov V.M., Egorov A.Yu. , Zhukov A.E., Maksimov M.V.,Tabatadze I.G., Kop’ev P.S. // Fiz.
Tekh. Poluprovodn. – 1994. – V. 28. —P.1483.28. Kryzhanovskaya, N.V. Whispering-gallery mode microcavity quantum-dotlasers / N.V. Kryzhanovskaya, M.V. Maximov, A.E. Zhukov // QuantumElectronics. — 2014 —V. 44. — №.3. —P. 189 – 200.29. Gayral, B. High-Q wet-etched GaAs microdisks containing InAs quantumboxes / B. Gayral, Gerard J.M., Lemaitre A., Dupuis C., Manin L., Pelouard J.L.// Appl. Phys.
Lett. — 1999.—V. 75. P.1908.30. Levi, A.F.J. Room temperature operation of microdisc lasers with submilliampthreshold current / A.F.J. Levi, Slusher R.E., McСall S.L., Tanbun-Ek T.,Coblentz D.L., Pearton S.J. // Electron. Lett. — 1992. — V. 28.—P. 1010.10831. Xu, Q. Micrometre-scale silicon electro-optic modulator /Q. Xu, B. Schmidt, S.Pradhan, M. Lipson // Nature— 2007. —V. 435.
— P. 325.32. Poon, A.W. Cascaded microresonator-based matrix switch for silicon on-chipoptical interconnection / A.W. Poon, X.S. Luo, F. Xu, H. Chen // Proc. IEEE.— 2009. —V. 97—P. 1216.33. Hah, D. Mechanically tunable optical filters with a microring resonator / D.Hah, J.
Bordelon, D. Zhang. // Appl. Optics. — 2011. — V. 50.—P. 432034. Fujita, M. Room temperature continuous wave lasing characteristics ofGaInAsP/InP microdisk injection laser / M. Fujita, Inoshita K., T. Baba //Electron. Lett. — 1998. —V. 34. — P. 278.35. Levi, A.F.J. Room temperature operation of microdisc lasers with submilliampthreshold current / A.F.J. Levi, R.E.
Slusher, S.L. McCall, T. Tanbuk-Ek, D.L.Coblentz, S.J. Perton. // Electron. Lett. — 1992. — V. 28. — P. 1010.36. Baba, T. Low threshold lasing and Purcell effect in microdisk lasers at roomtemperature /T. Baba, D. Sano. // IEEE J. Select. Top. Quant. Electron. –2003 .— V.9. —P. 1340.37. Antoine-Vincent, N. Observation of Rabi splitting in a bulk GaN microcavitygrown on silicon /N. Antoine-Vincent, F. Natali, D. Byrne, A. Vasson, P.Disseix, J.
Leymarie, M. Leroux, F. Semond, J. Massies, // Phys Rev B.— 2003.— V. 68. — P. 153313.38. Semond, F. Strong light-matter coupling at room temperature in simplegeometry GaN microcavities grown on silicon / F. Semond, I.R. Sellers, F.Natali, D. Byrne, M. Leroux, J. Massies, N.
Ollier, J. Leymarie, P. Disseix, A.Vasson // Appl Phys Lett. — 2005. —V. 87.– P. 021102–339. Butté, R. Room-temperature polariton luminescence from a bulk GaNmicrocavity / R. Butté, G. Christmann, E. Feltin, J. Carlin, M. Mosca, M.Ilegems, N. Grandjean, // Phys Rev B.– 2006. – V.
73. – P. 033315.40. Shimada, R. Cavity polaritons in ZnO-based hybrid microcavities /R. Shimada,J. Xie, V. Avrutin, U. Özgür, H. Morkoc // Appl Phys Lett. — 2008. — V. 92.— P. 011127.41. Faure, S. Relaxation and emission of Bragg-mode and cavity-mode polaritonsin a ZnO microcavity at room temperature / S. Faure, C.
Brimont, T. Guillet, T.Bretagnon, B. Gil, F. Médard, D. Lagarde, P. Disseix, J. Leymarie, J. ZunigaPerez, M. Leroux, E. Frayssinet, J.C. Moreno, F. Semond, S. Bouchoule, // ApplPhys Lett.— 2009. — V. 95.— P.12110242. Nakayama, M. Observation of Exciton Polaritons in a ZnO Microcavity withHfO2/SiO2 Distributed / M. Nakayama, Bragg Reflectors, S. Komura, T.Kawase, DaeGwi Kim // J Phys Soc Jpn. — 2008.
— V. 77. — P. 093705.43. Schmidt-Grund, R. Exciton-polariton formation at room temperature in a planarZnO resonator structure / R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G.Benndorf, H. Hochmuth, M. Lorenz, M. Grundmann // Appl Phys B. —2008.— V.93.— P. 331–337.44. Halm, S. Strong exciton-photon coupling in a monolithic ZnO/(Zn,Mg)Omultiple quantum well microcavity / S. Halm, S. Kalusniak, S. Sadofev, H.-J.Wunsche, F.
Henneberger // Appl Phys Lett. — 2011. — V. 99. 181121.10945. Jamadi, O. Polariton condensation phase diagram in wide-band-gap planarmicrocavities: GaN versus ZnO / O. Jamadi, F. Réveret, E. Mallet, P. Disseix,F. Médard, M. Mihailovic, D. Solnyshkov, G. Malpuech, J. Leymarie, X.Lafosse, S. Bouchoule, F. Li, M. Leroux, F.
Semond, J. Zuniga-Perez, // Phys.Rev. B. — 2016. — V. 93.46. Brehier, A. Strong exciton-photon coupling in a microcavity containing layeredperovskite semiconductors / A. Brehier, R. Parashkov, J.S. Lauret, E. Deleporte// Appl. Phys. Lett. — 2006. — V. 89. — P. 171110.47. Lidzey, D.G. Room Temperature Polariton Emission from Strongly CoupledOrganic Semiconductor Microcavities / D.G. Lidzey, D.D.C. Bradley, T.Virgili, A. Armitage, M.S. Skolnick, S. Walker, // Phys Rev Lett.— 1999. —V.