Диссертация (1150593), страница 13
Текст из файла (страница 13)
57, Is. 12. P. 29943008.[82] Huang M., Manton J. Coordination and consensus of networkedagents with noisy measurements: stochastic algorithms and asymptoticbehavior // SIAM Journal on Control and Optimization. 2009. Vol. 48, No. 1.
P. 134161.[83] Inozemtsev S., Dmitriev A. The essence of magenta schedulingsolutions for practical applications // òðóäû Ìåæäóíàðîäíîé íàó÷íîòåõíè÷åñêîé êîíôåðåíöèè ¾Ïåðñïåêòèâíûå èíôîðìàöèîííûå òåõíîëîãèè¿. Ñàìàðñêèé ãîñóäàðñòâåííûé àýðîêîñìè÷åñêèé óíèâåðñèòåò èì. àêàäåìèêà Ñ. Ï. Êîðîëåâà. 2013. Ñ. 21-22.[84] Ivanskiy Yu.
Consensus achievement for dierent task classes in multiagent network //  êíèãå: Óïðàâëåíèå, èíôîðìàöèÿ è îïòèìèçàöèÿ (VI ÒÌØ) Òåçèñû äîêëàäîâ Øåñòîé Òðàäèöèîííîé âñåðîññèéñêîé ìîëîäåæíîé ëåòíåé Øêîëû. Ôåäåðàëüíîå ãîñóäàðñòâåííîå áþäæåòíîå ó÷ðåæäåíèå íàóêè, Èíñòèòóò ïðîáëåì óïðàâëåíèÿèì. Â. À. Òðàïåçíèêîâà Ðîññèéñêîé àêàäåìèè íàóê, Íàöèîíàëüíûéêîìèòåò ïî àâòîìàòè÷åñêîìó óïðàâëåíèþ, Ëàáîðàòîðèÿ ñòðóêòóðíûõ ìåòîäîâ àíàëèçà äàííûõ â ïðåäñêàçàòåëüíîì ìîäåëèðîâàíèèÌÔÒÈ; ïîä ðåäàêöèåé Á. Ò. Ïîëÿêà.
2014. Ñ. 31.[85] Ivanskiy Y., Amelina N., Granichin O., Granichina O., Jiang Y.Optimal step-size of a local voting protocol for dierentiatedconsensuses achievement in a stochastic network with cost constraintsfor dierent priorities // In: Proc. of the 2015 IEEE Multi-Conferenceon Systems and Control (MSC 2015). September 2123. Sydney,Australia. 2015. P. 13671372.[86] Jadbabaie A., Lin J., Morse A.
S. Coordination of groups of mobileautonomous agents using nearest neighbor rules // IEEE Transactionson Automatic Control. 2003. Vol. 48, Is. 6. P. 9881001.89[87] Jiang Y. , Tham C.-K., Ko C.-C. A probabilistic priority schedulingdiscipline for multi-service networks // Computer Communications. 2002.
Vol. 25, Is. 13. P. 12431254.[88] Kar S. Moura J. M. Distributed consensus algorithms in sensornetworks: quantized data and random link failures // IEEETransactions on Signal Processing. 2010. Vol. 58, Is. 3. P. 13831400.[89] Kiefer J., Wolfowitz J. Statistical estimation on the maximum ofa regression function // The Annals of Mathematical Statistics. 1952. Vol. 23. P. 462466.[90] Kushner H. J., Yin G.
G. Stochastic Approximation Algorithms andApplications. New York. Springer-Verlag. 2002. 478 p.[91] Lewis F. L., Zhang H., Hengster-Movric K., Das A. CooperativeControl of Multi-Agent Systems: Optimal and Adaptive DesignApproaches (Communications and Control Engineering). Springer. 2014. 307 p.[92] Li W. Stability analysis of swarm with general topology // IEEETransactions on Systems, Man and Cybernetics, Part B. 2008. Vol.
38, Is. 4. P. 10841097.[93] Li T., Zhang J. Mean square average-consensus under measurementnoises and xed topologies: necessary and sucient conditions //Automatica. 2009. Vol. 45, Is. 8. P. 19291936.[94] Matveev A. S, Novinitsyn I., Proskurnikov A. V. Stability ofcontinuous-time consensus algorithms for switching networks withbidirectional interaction // In: Proc. of European Control Conference(ECC'2013). Zurich.
P. 18721877.[95] Olfati-Saber, R., Fax J., Murray R. Consensus and cooperation innetworked multi-agent systems // Proceedings of the IEEE. 2007.Vol. 95, Is. 1. P. 215233.[96] Olfati-Saber, R., Murray R. Consensus problems in networks of agentswith switching topology and time-delays // IEEE Transactions onAutomatic Control. 2004. Vol. 49, Is. 9.
P. 15201533.90[97] Polyak Â. Ò., Tsybakov A. Â. On stochastic approximation witharbitrary noise (the KW case) / In: Topics in NonparametricEstimation. Khasminskii R. Z. eds. // Advances in Soviet Math., Amer.Math. Soc. Providence. 1992. No. 12. P. 107113.[98] Proskurnikov A. V. Average consensus in networks with nonlinearlydelayed couplings and switching topology // Automatica. 2013. Vol. 49, No.
9. P. 29282932.[99] Rajagopal R., Wainwright M. Network-based consensus averaging withgeneral noisy channels // IEEE Transactions on Signal Processing. 2011. Vol. 59, No. 1. P. 373385.[100] Ren W., Beard R. Consensus seeking in multiagent systems underdynamically changing interaction topologies // IEEE Transactions onAutomatic Control. 2005. Vol. 50, Is. 5. P.
655661.[101] Ren W., Beard R. Distributed Consensus in Multi-Vehicle CooperativeControl: Theory and Applications. Springer. 2007. 391 p.[102] Ren W., Beard R., Atkins E. Information consensus in multivehiclecooperative control // IEEE Control Systems. 2007. Vol. 27,Is. 2. P. 7182.[103] Robbins H., Monro S. A stochastic approximation method // TheAnnals of Mathematical Statistics. 1951.
Vol. 22. P. 400407.[104] Rzevski G., Skobelev P. Managing Complexity. WIT Press. 2014. 216 p.[105] Skobelev P., Glaschenko A., Grachev I., Inozemtsev S. MAGENTAtechnology case studies of magenta i-scheduler for road transportation// In: Proc. of the 6th International Joint Conference on AutonomousAgents and Multiagent Systems (AAMAS'07) 2007. P. 13901397.[106] Spall J.
C. A one-measurement form of simultaneous perturbationstochastic approximation // Automatica. 1997. Vol. 33. P. 109112.[107] Spall J. C. Multivariate stochastic aproximation using a simultaneousperturbation gradient aproximation // IEEE Transactions onAutomatic Control. 1992.
Vol. 37, No. 3. P. 332341.91[108] Tanner H. G., Jadbabaie A., Pappas G. J. Flocking in xed andswitching networks // IEEE Transactions on Automatic Control. 2007. Vol. 52, No. 5. P. 863868[109] Tsitsiklis J., Bertsekas D., Athans M. Distributed asynchronousdeterministic and stochastic gradient optimization algorithms // IEEETransactions on Automatic Control. 1986.
Vol. 31, No. 9. P. 803812.[110] Vakhitov A., Vlasov V., Granichin O. Adaptive Control of SISO Plantwith Time-varying Coecients Based on Random Test Perturbation //In: Proc. of the 2010 IEEE American Control Conference (ACC 2010).Baltimore, Maryland, USA. 2010. P.
40044009.[111] Viragh C., Vasarhelyi G., Tarcai N., Szorenyi T., Somorjai G.,Nepusz T., Vicsek T. Flocking algorithm for autonomous ying robots// Bioinspiration & Biomimetics. 2014. Vol. 9, No. 2. P. 25012.[112] Wang L., Liu Z., Guo L. Comparing adaptive and non-adaptivemodels of cargo transportation in multi-agent system for real timetruck scheduling // In. Proc. of the 26th Chinese Control Conference.Zhangjiajie, Hunan, China. 2007. P.
737741.[113] Wu C. Synchronization in complex networks of nonlinear dynamicalsystems. World Scientic Publishing Company Incorporated. 2007. 168 p.[114] Yu W., Chen G., Cao M. Distributed leader-follower ocking controlfor multi-agent dynamical systems with time-varying velocities //Systems & Control Letters. 2010. Vol. 59, No. 9. P. 543552.[115] Yu W., Chen G., Cao M. Some necessary and sucient conditionsfor second-order consensus in multi-agent dynamical systems //Automatica.
2010. Vol. 46, No. 6. P. 10891095.92.